Training school: Non living materials meet living biology Patras, Grece 9-12 May 2017

Scaffold design, processing, biodegradation and resorption

LMCPA-UVHC Pôle universitaire de Maubeuge Boulevard Charles de Gaulle 59600 Maubeuge FRANCE

Regeneration of hard tissues (bone, cartilage and tooth) is one of the most demanding issues in medecine.

Synthetic bone scaffolds have advantages over bone grafts because they are not fraught with uncertainties (e.g. disease transmission, risk of infection, or immunogenicity).

However, these scaffolds have to show high mimicry of the host tissues and be able, with an appropriate porosity, to facilitate the progenitor cells in-growth and communication with neighboring cells to the regeneration of new functional tissue.

How to mímic natural bone for substitute processing?

Bone structure

Natural composite of collagen and mineral (hydroxycarbonate apatite: HA)

2 types of porous structures: - cortical with dense structure → compact bone (usually outer layer) cancellous or trabecular bone with high porosity → spongy bone (usually interior)

How to mímíc natural bone structure? 5

Bone scaffolds are porous frameworks with tailored chemical composition and porous architecture intended for inducing cartilage (hydrated proteoglycan hydrogel embedded into a type II collagen network) and bone tissue (type I collagen and hydroxyapatite) regeneration.

They may be referred to as 3D matrices that mimic the natural cellular environment for cells to grow, differentiate, and deposit biomimetic HA.

Therefore, bone tissue engineering is a complex and dynamic process that initiates with migration and recruitment of osteoprogenitor cells. This is followed by their proliferation, differentiation, and bone matrix formation.

3D Scaffold Biomaterial

- Natural polymers (Collagen, Chitosan)
- Synthetic polymers (PLA, PLGA, PCL, PEKK)
- Ceramics (HA, beta-TCP)
- Bioglasses
- Glass ceramics

<u>Cells</u>

- Chondrocytes
- Osteoblasts
- Mesenchymal stem cells

Tissue Engineered Solution

Regulators:Biochemical factors-e.g. cytokines (growth factors)Mechanical environment-e.g. applied strain, fluid shear

Scaffold Approaches in Tissue Engineering

How to mímíc natural bone?

Criteria for an ideal scaffold for bone regeneration:

¹ - Is made from a biocompatible material,

²- acts as template for tissue growth in 3 dimensions,

³- has an interconnected macro-porous network with **diameters** > **100μm** to allow an ingrowth of cells and the vascularization and an efficient transport of morphogens, cytokines, growth factors, nutrients, oxygen, and waste products,

⁴- bonds to the host tissue

⁵- exhibits a surface texture favorable to cell adhesion

⁶- resorbs at the same rate as the tissue is repaired

⁷- is made from processing technique that can produce irregular shapes to match that of the defect in the bone of the patient,

⁸- exhibits mechanical properties sufficient to be able to regenerate tissue in bone in load bearing sites,

⁹- has the potential to be commercially producible to the required ISO or FDA standards.

J.R.Jones, L.L.Hench Current opinion in solid state and materials science 7 (2003) 301-307

How to mimic natural bone for substitute processing?

Part I: Requirements for ideal scaffolds

Part II: Fabrication technologies

Part III: Example of comparative study on cell colonization inside ceramic scaffolds presenting different architectures

How to mímic natural bone for substitute processing? 1st Material choice

Biocompatible material :

- Natural polymers: collagen, chitosan ...
- Synthetic polymers: poly lactic acid (PLA), poly lactic-co-glycolic acid (PLGA), polycaprolactone (PCL), poly-ether-ketone-ketone (PEKK) ...

Bioactive calcium phosphate ceramic scaffolds : HA, beta-TCP

Bioglasses and Glass ceramics

Organic/inorganic composites

Biopolymers

Natural: alginates, collagen, chitosan, glycosaminoglycans (GAGs) and elastin, gelatin and fibrin

Collagen : protein constituted by polypeptide chains

Chitosan: D-glucosamine extracted from shellfish skeleton

Synthetic:

PLA/PGA/copolymers PLGA, PLLA: Biodegradable : Weeks to Months

Biocompatible BUT no natural sites for cell adhesion and the in vivo degradation induces local reduction in pH with possible inflammation response.

PEKK (Poly-ether-ketone-ketone): a thermoplastic polymer Use for long-term implantable human devices: unlimited (years)

Orthopedics, neurological, dental, spinal and cardiovascular implants; PEKK-based 3D-printed bones

Training school Non Living Materials Meet Living Biology, Patras, Greece 9-12 May, 2017

local reduction in al

Tm= 60°C Tg= -60°C

11

How to mímic natural bone for substitute processing? 1st Material choice

Biocompatible material :

Natural polymers: collagen and chitosan

Synthetic polymers: PLA, PLGA, PCL, PEKK

Bioactive calcium phosphate ceramic scaffolds : HA, beta-TCP

Bioglasses and Glass ceramics:

CaP-based scaffolds allow new bone formation and biomineralization by surface-induced CaP crystallization and contact osteogenesis.

Organic/inorganic composites

Bioactive calcium phosphate ceramics: CaP

phosphates calciques présents en fonction de la composition et de la température.

 $Ca_3(PO_4)_2 \quad Ca_{10}(PO_4)_6OH_2$

	Enamel	Dentine	compact bone	ТСР	HAP
Са	36,1	35	35,5	38,8	45,2
Р	17,3	17,1	17,1	20,0	21,0
CO ₂	3	4	4,4	-	-
Ca/P (molar)	1,61	1,58	1,60	1,50	1,667

2 phases: α and β

Resorption rate: HAP $< \beta$ -TCP $< \alpha$ -TCP

Bio-degradability is depending on the solubility of CaP (+ enzymatic

C.Combes and C.Rey *Biomatériaux à base de phosphates de calcium*, Techniques de l'ingénieur 2013 J.C.Elliot. – Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier (1994).

By adjusting the content of β -tricalcium phosphate (β -TCP), CaP-based scaffolds can be made partially degradable.

Bioactive calcium phosphate ceramics: CaP

The resorption rate of the scaffolds depends also on the pore size

Increase with an increase of pore size (or a decrease of surface area) with as consequence a decrease of mechanical properties.

Mahdieh Bashoor-Zadeh, Biomaterials 32 (2011) 6362-6373

Experimental data (mCT analysis) and simulations of samples implanted in bone defects of sheep for 6, 12 and 24 weeks. (a) 128 μ m, (c) 365 μ m

10

5

15

Time(week)

20

25

0

0

How to mímic natural bone for substitute processing? 1st Material composition

Biocompatible material :

Natural polymers: collagen and chitosan

Synthetic polymers: PLA, PLGA, PCL

Bioactive calcium phosphate ceramic scaffolds : HA, beta-TCP

Bioglasses and Glass ceramics:

Organic/inorganic composites

Bioglass scaffolds release calcium and phosphate ions from their surface after implantation; this promotes formation of a hydroxycarbonate apatite (HCA) layer on them, most probably by a surface-induced CaP crystallization mechanism. This HCA layer can significantly enhance osteoblast activity, and also adsorb proteins and growth factors that facilitate new bone formation in vivo.

Bioglass[®] 45S5 of composition (in mol%): 46.1 % SiO₂, 24.4% Na₂O, 26.9% CaO and 2.6% P₂O₅

Low mechanical properties of bioglasses.

 \rightarrow Glass ceramics

Property	Cerabone	Bioverit I	Highly bioactive glass-ceramic	Bioglass 45S5
Bioactivity class	В	В	А	А
Machinability	Low	Good	Fair	Low
Density (g/cm ³)	3.1	2.8	2.6	2.66
Three-point flexural	215	140-180	210	42
strength (MPa)				
Young's modulus (GPa)	120	70-90	70	35
Vickers hardness (HA)	680	500	600	460
Fracture toughness (MPa√m)	2.0	1.2–2.1	0.95	-

S.Hampshire in Advances ceramis biomaterials : materials, devices and challenges Elsevier 2017

Bioactive calcium phosphate ceramics: CaP

The low mechanical properties of calcium phosphate ceramics have to be overcome

The mechanical properties decrease has be balanced by the new bone formation. To date, no suitable solutions have been found for regenerating long and load-bearing bone segments.

Raghunath et al. (2007).

 \rightarrow limited improvement of mechanical properties can be achieved by optimizing their pore architecture.

 \rightarrow seeding the scaffolds with bone marrow stem cells (BMCs) and/or introducing and harboring drugs, genes, and different growth factors into the scaffolds. Quarto R et al. 2001 N.Engl.J.Med. 344 (5) pp 385-386

Combination of scaffolds with MSC osteoprogenitor cells

Bone volume fraction at 7, 30 and 90 days after surgery in the defect area.

S.Frasca et al J.Mater.Med. (2017) 28:35

Bioactive calcium phosphate ceramics: CaP

The low mechanical properties of calcium phosphate ceramics have to be overcome

The mechanical properties decrease has to be balanced by the new bone formation. To date, no suitable solutions have been found for regenerating long and load-bearing bone segments.

 \rightarrow limited improvement of mechanical properties can be achieved by optimizing their pore architecture.

 \rightarrow seeding the scaffolds with bone marrow stem cells (BMCs) and/or introducing and harboring drugs, genes, and different growth factors into the scaffolds. Quarto R et al. 2001 N.Engl.J.Med. 344 (5) pp 385-386

 \rightarrow employing a composite strategy:

* Sealing surface defects with a biodegradable polymer coating,

* or developing an interconnected CaP-polymer scaffold, to take advantage of both CaPs and polymers to meet the mechanical and physiological requirements of the host tissue.

How to mímic natural bone for substitute processing? 1st Material composition

Biocompatible material :

Natural polymers: collagen and chitosan

Synthetic polymers: PLA, PLGA, PCL

Bioactive calcium phosphate ceramic scaffolds : HA, beta-TCP

Bioglasses and Glass ceramics:

CaP-based scaffolds allow new bone formation and biomineralization by surface-induced CaP crystallization and contact osteogenesis.

Organic/inorganic composites

How to mímic natural bone for substitute processing? 1st Material composition

Organic/inorganic composites 1.2

How to mímic natural bone for substitute processing? 2nd Porosity architecture

Porous scaffolds for bone regeneration require well-defined pore architectures to facilitate tissue in-growth:

✓ Interconnecting and tortuosity porosity

Schematic of the different pore types found in tissue engineering scaffolds

Porous scaffolds for bone regeneration require well-defined pore architectures to facilitate tissue in-growth:

✓ Communication with neighboring cells

In this context, fabrication of hybrid PCL scaffolds constituted by 3D plotted fibers (\emptyset 192 μ m) with nanofibers (\emptyset 331nm) deposited onto the fibers.

MC3T3-E1 Cell viability on untreated 3D plotted PCL scaffolds, untreated hybrid PCL scaffolds and hybrid scaffolds coated with HA with low and high carbonate content.

Nathalie Luickx, PhD thesis 2016, Gent University (B)

How to mímic natural bone for substitute processing? 2nd Porosity architecture

Porous scaffolds for bone regeneration require well-defined pore architectures to facilitate tissue in-growth: $6-13 \mu m$ 44-149 μm

- ✓ Optimal pore size depending on cell type:
 - 5 μ m for neovascularization
 - 5-15 μ m for fibroblast ingrowth
 - 20 μ m for hepatocytes
 - 200-350 μ m for osteoconduction
 - $20-125\mu$ m for adult mammalian skin

	Pore size (μm)		Lamellar thickness	Porosity (%)	
	а	b	(μm)		
IT 3	6 ± 2	13 ± 5	7 ± 3	53 ± 1	
IT 7	44 ± 11	149 ± 60	43 ± 29	36 ± 1	

MG63 size: 10 µm width, 50 µm length

Porous scaffolds for bone regeneration require well-defined pore architectures to facilitate tissue in-growth:

✓ Shape porosity

M.Lasgorceix, Ph.D. SPCTS Limoges 2014

 $^{\ast}~$ collaboration with $\mathbf{Dr}~\mathbf{Urda}~\mathbf{R}\mathbf{\ddot{u}}\mathbf{drich}$

How to mímic natural bone for substitute processing? 2nd Porosity architecture

✓ Adequate surface properties:

Surface roughness modulates the biological response of tissues in contact with the implant. Direct influence in vitro as well as in vivo on:

- cellular morphology, proliferation,

- phenotype expression

Static osteoblast morphology

How to mímic natural bone for substitute processing? 2nd Porosity architecture

Porous scaffolds for bone regeneration require well-defined pore architectures to facilitate tissue in-growth:

✓ Adequate surface properties:

SEM pictures of MG63 cells attached to PC membrane surfaces with different micropore sizes: (A) 0.2, (B) 0.4, (C) 1.0, (D) 3.0, (E) 5.0, and (F) 8.0 µm. S. J. Lee et al., 2004

Cell adhesion and proliferation were progressively inhibited as the PC membranes had micropores with increasing size, probably due to surface discontinuities

✓ Adequate surface properties:

SEM pictures of MG63 cells attached to HA surfaces treated by laser

D1

<u>Surface</u>: **polished** <u>Cell density</u>: low <u>Morphology</u>: random

<u>Surface</u>: **linear patterned** <u>Cell density</u>: medium <u>Morphology</u>: elongated, tendency of elongation along the grooves

<u>Surface</u>: honey patterned <u>Cell density</u>: high <u>Morphology</u>: adjustable

M. Lasgorceix et al ,«Micropatterning of beta tricalcium phosphate bioceramic surfaces, by femtosecond laser, for bone marrow stem cells behavior assessment", sent to be published in JECS.

✓ Adequate surface properties:

✓ Adequate surface properties:

linear

D1 Elongation along the grooves Ability to adapt morphology to follow the design

Cell density remains sufficiently low to allow cell population growth after day 1

Training school Non Living Materials Meet Living Biology, Patras, Greece 9-12 May, 2017

honey

MG63 cell behaviour

D7

smooth

linear

honey

а d g

presence of several cell layers on all surfaces

orientation of the cells still clearly identified, even on the top cellular layer

effect of the surface pattern is not limited at the first cell layer covering the surface

M. Lasgorceix, BCRC, 2017

How to mímic natural bone for substitute processing? 2nd Porosíty architecture

Porous scaffolds for bone regeneration require well-defined pore architectures to facilitate tissue in-growth:

✓ Adequate surface properties:

В

Various techniques to prepare polymeric micro- or nano-patterned surfaces for cell engineering purposes:

(A) nanotopography formed via polymers spontaneously phase separate;

(B) colloids act as etch masks for topography formation;

C) Application of electron beam lithography on surface biopatterning

How to mimic natural bone for substitute processing?

Part I: Requirements for ideal scaffolds

Porous scaffolds for bone regeneration require well-defined pore architectures (pore size , shape, adequate surface properties ...).

 \rightarrow New processing concepts of free-form fabrication have been developed to prepare scaffolds with tailor-made interconnected macroporosity.

 \rightarrow Scaffolds with customized external geometry may also be prepared on an industrial scale.

Part II: Fabrication technologies

Part III: Example of comparative study on cell colonization inside ceramic scaffolds presenting different architectures

1. Solvent casting & particulate leaching

- Simple and most commonly used method for fabricating polymeric scaffolds.
- Method involves mixing water soluble salt (e.g., NaCl) particles into a biodegradable polymer solution
 - Mixture cast into the mold of the desired shape.
 - Solvent removed by evaporation, vacuum or lyophilization
 - Salt particles are leached out by water to obtain a porous structure

Porous scaffold formed through particulate leaching technique

Advantages:

- 1. Simple operation
- 2. Adequate control of pore size and porosity by salt/polymer ratio

and particle size of the added salt, respectively

Limitations:

- 1. Cubic crystal shape of the salt
- 2. NaCl residues
- 3. Thickness: 0.5-2 mm
- 4. Issues with pore interconnectivity

2.Replica techniques

Replica technique is based on the impregnation of a cellular structure with a ceramic slurry in order to produce a macroporous ceramic exhibiting the same morphology as the original porous material.

Many synthetic or natural cellular structures can be used as templates.
Scaffold Fabrication technologies a. Replica Synthetic or natural template Synthetic or S

Synthetic templates:

-Highly porous polymeric sponge (typically polyurethane) is initially soaked into a ceramic suspension until the internal pores are filled in with ceramic material. -The impregnated sponge is then passed through rollers to remove the excess suspension and enable the formation of a thin ceramic coating over the struts of the original cellular structure.

-The ceramic coated polymeric template is dried and pyrolysed and finally the ceramic coating is sintered.

Macropore and interconnection sizes depend on foam characteristics and on CaP slurry properties F. Lelièvre & A. Destainville,

Thèses, Limoges, 1992 & 2005

Natural templates: Coral CaCO₃

The coral exhibit the presence of both calcite and aragonite phases and presents a porous structure which depends on coral species:

- Acropora (20% porosity) near to compact bone
- Porites (50% porosity) near to spongy bone

The pore size varies between 150 and 500 microns versus species. \rightarrow coral can be directly used as bone substitute

Natural templates: Coral

First method: 1970 White et al. lost-wax method named "replamineform"

-The coral is first impregnated with wax under vacuum to obtain a negative form of the cellular form.

-After hardening the wax, the calcium carbonate of the coralline skeleton is leached out using a strong acidic solution.

-The wax model is impregnated with a ceramic suspension and subsequently removed by pyrolysis.

Second method: 1974 D. M. Roy and S. K. Linnehan

The coral is directly converted into macroporous scaffolds by hydrothermal treatments at high temperatures and pressures in a phosphate solution. The carbonate ions from the aragonite material ($CaCO_3$) originally present in the coral are partially or totally replaced by phosphate ions to form hydroxyapatite.

Natural templates: wood

The presence of oriented vessels in the structure of wood enables the preparation of macroporous ceramics with highly anisotropic aligned pores.

Replica from wood

CRITERIA OF SELECTION:

- Hierarchical and anisotropic structure
- Microstructural properties (pore size and distribution, pore interconnection)

Replica from wood

RATTAN WOOD REPRODUCES SPONGY BONE

Replica from wood

MG63 osteoblast-7 days

hydroxyapatite scaffolds derived by rattan for sheep implant

3.Sacrificial template technique

Sacrificial template technique consists of the preparation of a biphasic composite comprising a continuous matrix of ceramic particles and a dispersed sacrificial phase. This phase is extracted to generate pores within the structure. This method leads to porous materials displaying a negative replica of the original sacrificial template contrarily to the previous replica methods.

Wide variety of sacrificial materials: synthetic organics : PVB beads, PMMA or PMMA-PEG beads, ... natural organics: sucrose, wax, starch...

The biphasic composite is prepared by various ways:

- a) Pressing a powder mixture of the two components
- b) Forming a two-phase suspension that is processed by wet colloidal routes such as slip or tape casting
- c) Impregnating previously consolidated preforms of the sacrificial material with the ceramic suspension.

The organics are after extracted through pyrolysis by applying long heating times at temperatures between 200 and 600°C depending on organic species.

Wide variety of sacrificial materials: synthetic organics : PVB beads, PMMA or PMMA-PEG beads, ... natural organics: sucrose, wax, starch...

The biphasic composite is prepared by various ways:

- a) Pressing a powder mixture of the two components
- b) Forming a two-phase suspension that is processed by wet colloidal routes such as slip or tape casting
- c) Impregnating previously consolidated preforms of PMMA beads scaffold with the CaP powder suspension.

The organics are after extracted through pyrolysis by applying long heating times at temperatures between 200 and 600°C depending on organic species.

Impregnation of PMMA beads consolidated preforms with CaP powder suspension.

Chemical forming with acetone

under pressure

100µm X200

- Bonding between PMMA beads (scaffold)
- Controlled diameter bonding (Interconnection) depends on time, temperature, pressure

Impregnation of PMMA beads consolidated preforms with CaP powder suspension.

- > Control of pore size depending on PMMA beads size
- Control of interconnection diameters: Id
 PMMA beads (500 600 μm)
 Id : 60 μm

Id: 260 μm

Control of porosity gradient in pore size and interconnection size

Possibility to add microporosity by mixing graphite as micropore forming agent.

Impregnation of PMMA beads consolidated preforms with CaP powder suspension.

Debinding: 220°C 30 hours + 400°C 5 hours Sintering: 1115°C 3 hours

B550 pore diameter 400 μm interconnection 45 - 65 μm Density of ceramic walls = 99 % Porosity = 65% Spherical pores homogeneously distributed in space with several interconnecting holes.

Impregnation of PMMA beads consolidated preforms with CaP powder suspension.

Wide variety of sacrificial materials:

synthetic organics : PVB beads, PMMA or PMMA-PEG beads, ...

natural organics: sucrose, wax, starch...

liquids: freeze-drying of water

By using liquid pore formers such as water and oils, liquids and volatile oils can be evaporated or sublimated at milder conditions without generating toxic gases and excessive stresses during pore former removal.

Freeze Foaming

- Foaming process is based on pressure reduction in the vacuum chamber of a freeze dryer

- Pores through rising water vapor, procedural air and later sublimation of frozen water (aqueous suspensions)

Freeze Foaming : Advantages

Patent: DE 10 2008 000 100, Tassilo Moritz

- No pore-forming agents needed (Replica or Placeholder Technique)→ environmentally friendly
- Foam with high amount of open porosity (50 -95%) and bimodal pore size distribution
- Meso- to macropores
- Near-net shaping possibility → personalization
- Different materials → different product lines according to the needs.

Freeze casting – ice templating

The objective was to mimic the nacre structure by using an oriented freezing process to allow oriented pore development.

Freeze casting

S. Deville et al,, Biomaterials 27 (2006) 5480-5489

Freeze casting

Pore long axis size:

- between 150 and 340 μm versus dry matter content
- between 13 and 210 μm versus cooling rate .

Total porosity: 36 to 67 % versus dry matter %

D. Hautcoeur Ph D UMons-BCRC Nov 2014

Freeze casting

Human bone

D. Hautcoeur Ph D UMons-BCRC Nov 2014

Freeze drying

Applied also to biopolymers

- Method consists of creating an emulsion by homogenization of a polymer solution (in an organic solvent) or water mixture
- Rapidly cooling the emulsion to lock in the liquid state structure
- Removing solvent (water) by freeze-drying
- Can control pore morphology (to some extent) by controlling rate of freezing and final freezing temperature.

Freeze drying

Aligned porous PVA scaffolds prepared by directional freezing

- Influence of freezing rate and final freezing temperature
- Constant cooling rate technique produced pores with a more uniform size and structure

Porous collagen-GAG scaffolds obtained with cooling rate (0.9C/min), (*O'Brien et al 2004*)

Effect of freeze-drying temperature on mean pore size of CG scaffolds.(*O'Brien et al 2005*)

Direct foaming technique consists of the incorporation of air into a suspension to create air bubbles.

The incorporation of bubbles can be carried out by mechanical agitation or by chemical reaction accompanied by degassing.

The total porosity of sintered foamed ceramics is proportional to the amount of gas incorporated into the liquid and is between 40% - 97%. The pore size depends on the stability of the wet foam before setting takes place \rightarrow foam stabilization with surfactant is necessary to control bubble size and final pore size (10 µm - 300 µm).

Schematic dependence of the disjoining pressure among two interacting gas bubbles as a function of their distance D.

Coalescence is favored by attractive van der Waals forces (a)

and can only be hindered by providing steric and/or electrostatic repulsion among the interacting bubbles (b) by adding long-chain surfactants or proteins or by adding colloidal particles.

A.R.Studart et al JACS 89 [6]1771-1789 (2006)

Direct foaming with long chain surfactant

The stabilisation with colloidal particles produces macroporous ceramics with smaller pore sizes (10 to 100 μ m instead of 35 to 1200 μ m).

Direct foaming with colloidal particles

Direct foaming with surfactant

Direct foaming with particles

The foam lifetime can be increased to several hours by adsorbing long-chain surfactants.

The foam lifetime can be increased to several days by adsorbing colloidal particles in the air bubbles.

Direct foaming technique

The direct foaming technique leads usually to close porosity (Fig a)

but open porosity ceramics can be obtained - by decreasing the concentration of stabilizing particles -or by adding minor amounts (<1wt%) of a sacrificial phase (e.g. graphite particles) (Fig b).

A.R.Studart et al JACS 89 [6]1771-1789 (2006)

Direct foaming by gel casting technique

Another way to stabilise the bubbles is to gelify the slurry. Suspensions of CaP particles in water with dispersing agents and organic monomers are foamed by agitation with surfactant under a nitrogen atmosphere. In situ polymerisation of the monomers is initiated to provoke cross-linking and form a 3D polymeric network (gel) before casting. Porous samples are sintered. Foam volume (and hence porosity) could be controlled by the surfactant concentration in the slurry, producing pores of maximum diameter of 100–200 μ m.

Direct foaming technique

Fig: Fabrication of porous scaffolds by gas foaming/particulate leaching: Sieved effervescent salt particles are dispersed in polymer gel paste, cast on a Teflon mold for solvent evaporation, immersed in water for gas foaming/salt leaching, and freeze dried. (*Jung Chung 2007, Adv Drug Delivery Reviews*)

	Method	Porosity (%)	Pore size (µm)	Pore size distribution	Pore shape	Space distribution
Replica	PU sponge	40 to 95	150 to 1300	Wide	Random	Anisotropic
	Coral	20 to 50	150 to 500	Wide	Random	Anisotropic
	Wood	25 to 95	10 to 300	Trimodal	Elongated	Columnar
	PMMA	25 to 90	250 to 1000	Monomodal or	Spherical	Isotropic
	beads			multimodal		
	Freeze	50 to 95	2 to 90	Bimodal	Spherical	Isotropic
Sacrificial	foaming					-
templates	Ice-	30 to 65	5 to 200 width	Monomodal	Ellipsoidal	Columnar
-	templating		10 to 500			
	(freeze		length			
	casting)					
Direct foaming	With	40 to 95	30 to 1000	Wide	Spherical	Isotropic
	surfactant					
	With	40 to 90	20 to 300	Wide	Spherical	Isotropic
	particles					
	Gel casting	40 to 90	100 to 1000	Wide	Spherical	Isotropic

5. 3D-Additive manufacturing technique

3D Additive manufacturing technique consists of production of highly complex 3D objects using data generated by computer aided design (CAD) systems.

An image of a defect in a patient can be taken (e.g. by X-ray microtomography, CT scan), which is used to develop 3D CAD computer model. The computer can then reduce the model to slices or layers.

The 3D objects are constructed layer-by-layer using rapid prototyping techniques :

- Paste extrusion techniques,
- Selective laser sintering,
- Binder jetting,
- Stereo lithography.

These techniques are traditionally applied to polymers and recently extended to ceramics.

Additive Manufacturing

Scaffold Fabrication technologies

1.Paste extrusion

FDM : fused deposition modeling

- Incandescent material extruded through a nozzle
- The solidification of each layer takes place instantly in contact with the previous one

3DPlot : threedimensional-plotting

Liquid or paste extruded through a mobile head, using compressed air

MJS : multiphase jet solidification

- Binder-powder mixture heated and extruded through a nozzle by a pumping system
- The nozzle scans horizontally to deposit the melting loading

[Kupp et al., Proceedings of the SFF Symposium. 1997]

ROD : robotic dispensing

- Ejection of a slurry in a solvent to induce precipitation
- Freezing and lyophilizing

Polymer [Zein et al., Biomaterials. 2002;23:1169–85]

Hydroxyapatite

[Dellinger et al., J Biomed Mater Res. 2007;82A:383-94]

HA/Chitosan

[Ang et al., Mater. Sci. Eng. 2002;20:35–42]

Robocasting

Robocasting of a preceramic polymer + fillers paste for the production of bioceramic scaffolds. A.Zocca, G. Franchin, H. Elsayed, E. Bernardo, P. Colombo. Department of Industrial Engineering, University of Padova, Italy

Paste extrusion technique

Robocasting

Robotic-assisted deposition consists of the robotic deposition of inks capable to fully supporting their own weight during assembly.

Surface Strut thickness : 200 to 500 μm Line spacing : 75 to 500 μm

β-TCP scaffold (P. Miranda González)

HA part with a gradient in porosity after printing and sintering (P=45%, $\sigma_c = 25$ -40 MPa)

Scaffold Fabrication technologies

2.Selective laser consolidation

SLS : selective laser sintering

- A laser beam scans the surface of a powder bed, mixed with a binder
 - → formation of a layer of material by selective sintering
- The non-sintered powder is then removed by brushing and / or blowing

Polymer ; CaP ; polymer/CaP composite [Duan et al., Acta Biomater. 2010;6:4495–505]

CaP craniofacial implant Polymer/HA composite [Lee et al., Proc. Solid Free. Fabr. Symp. 1994;191–7] [Eosoly et al., Acta Biomater. 2010;6:2511–7]

Scaffold Fabrication technologies

SLM : selective laser melting

The powder is melted under the laser irradiation

2.Selective laser consolidation

Titanium

[Fukuda et al., Acta *Biomater.* 2011;7:2327–36]

β -TCP / PDLLA composite

[Lindner et al., J. Biomed. Mater. Res. A. 2011;97:466-71]

[Van Bael et al.,

Acta Biomater. 2012;8:2824-34]

3.Binder jetting

 Binder jetting – a liquid bonding agent is selectively deposited to consolidate a powder bed

3DP : threedimensional-printing

[Warnke et al., J. Biomed. Mater. Res. B Appl. Biomater. 2010;93:212-7]

Scaffold Fabrication technologies

4.Stereolithography (SLA) and microstereolithography (µ-SLA)

Scaffold Fabrication technologies

4.Stereolithography (SLA) and microstereolithography (µ-SLA)

HAP Biactive Implant

3D AM techniques	Tolerance	Advantages	Limitations
Material extrusion	0.5 to 1mm	 Ease of support removal Good mechanical properties No material waste 	- Precision limited by the filament diameter (about 1mm)
Binder jetting	0.05 to 0.1mm	 Wide variety of materials Simple technology 	 High roughness of the surface Expensive technology Poor mechanical properties Use of toxic organic binders
Selective laser consolidation	0.2 to 0.5mm	 High production rates possible Complex designs Low costs Good surface finishing 	 High roughness of the surface Poor mechanical properties Limited to materials which absorb IR light
Stereolithography	0.01 to 0.1mm	 Complex designs Good surface finishing Good mechanical properties High accuracy 	 Expensive photosensitive resins Cleaning step necessary Control of the vertical accuracy

Review: Additive Manufacturing to Produce Complex 3D Ceramic Parts T. Chartier, C. Dupas, M. Lasgorceix, J. Brie, E. Champion, N. Delhote, Chr. Chaput *J. Ceram. Sci. Tech.*, **xx** [xx] xx (2015) DOI: 10.4416/JCST2014-00040

How to mimic natural bone for substitute processing?

Part I: Requirements for ideal scaffolds

Part II: Fabrication technologies

Many techniques are today employed to produce macroporous bioceramics with varying structural and mechanical properties.

Most of them are already commercially used.

The more recent 3D-manufacturing methods are promising to producing specific interconnected scaffold architectures with various pore size and morphologies and pore size gradient, not achievable by the usual techniques .

How to mímic natural bone for substitute processing? 2nd Porosity architecture

✓ Porosity gradient

3D- printing

TCP paste was extruded from Simulation of cortico-cancellous bone structure by 3D printing (3D bio plotting system EnvisionTEC, Germany) of bilayer calcium phosphate-based Scaffolds

Thafar Almela et al Bioprinting 2017 DOI: http://dx.doi.org/10.1016/j.bprint.2017.04.001

How to mímic natural bone for substitute processing? 2nd Porosity architecture

✓ Porosity gradient

Freeze casting by ice-templating + PMMA route

- •Add few mL of slurry inside the mould at -20°C
- Wait few minutes to freeze and place at the centre the pre-sintered ceramic scaffold.
- Wait until it is blocked by ice before adding more slurry and wait for a total freezing

Freeze casting by ice-templating + PMMA route

S.Chamary et al Journal Ceramics International 2017

How to mimic natural bone for substitute processing?

Part I: Requirements for ideal scaffolds

Part II: Fabrication technologies

Part III: Example of comparative study on cell colonization inside ceramic scaffolds presenting different architectures

Objectives: Study of influence of β -TCP porous architecture on cell invasion, proliferation and osteogenesis

	Samples	Shaping techniques	Porosity (%)	Ø pore and interconnexion (µm)
	3D	stereo lithography	50	500 / 100
	PS	Polymer	65	400 – 500 / 100
30KU X35 500FA 607360	BIO 1 BIO 4 BIO 7	Freeze casting	50 50 36	150 / 40 360 / 55 150 / 45
MG63 Osteoblasts		2 x 10 ⁵ cells/well	11	mm
HMSC Osteoprogenitors		2 x 10 ⁴ cells/well		3 mm

- Cell morphology: OM and SEM and Cell activity : MTT et Resazurine
- Proteic activity: alkaline phosphatase biochemical marker of cellular differenciation

Training school Non Living Materials Meet Living Biology, Patras, Greece 9-12 May, 2017

90

Cell colonization with MG63 osteoblasts

4 days PMMA beads 450μm

Ice-templating 366/54 μm, P= 51%, t=52μm

Stereolithography 450μm

HMSC Osteoprogenitors

Cell proliferation

150/45 μm

Bio7

36%

- not visible after 21 days
- Penetration starting at day 28, increase at day 35 but much lower than for the other freeze cast scaffolds

• Cellular proliferation (Resazurine)

-Latence period followed by regular growth

-Confluence reached at day 28 for all the samples and at day 21 for the control

-PS and 3D are very good substrates for cell culture

Training school Non Living Materials Meet Living Biology, Patras, Greece 9-12 May, 2017

96

Alkaline phosphatase - HMSC

The freeze cast scaffolds due to their particular pore morphology present a more rapid cell differentiation into osteoblasts.

Training school Non Living Materials Meet Living Biology, Patras, Greece 9-12 May, 2017

97

Conclusion

- The choice of the shaping technique has to be done according to the desired pore size range and architecture in relation to the application (implantation site : load or non load bearing area, defect size,...)
- The cell differentiation is influenced by pore architecture.
- The additive manufacturing techniques are very promising to achieve mimic porous architectures and hybrid composites constituted by both mineral and polymeric materials. These techniques can manufacture pore size and shape gradient favorable to a fast cell invasion into the center of scaffolds.

Acknowledgments

T.Chartier, M.Lasgorceix, SPCTS Limoges A.Tampieri, ISTEC Faenza M.Ahlhelm, *IKTS Fraunhofer* A.Zocca, P.Colombo, Dept of Industrial Engineering University of Padova D.Hautcoeur, S.Hocquet, F.Cambier, BCRC Mons V.Sciamanna, M.Gonon, University of Mons E.DeBarra, University of Limerick, Ireland Conor Buckley, Trinity College Dublin, Ireland K.Salim, PCAS, Paris, France J.C. Hornez, F.Bouchart, S.Chamary, LMCPA-UVHC

Replica from wood STAGES OF BIOMORPHIC TRANSFORMATION OF WOOD

Slow heating/cooling (1°C/h) to decompose the organic component and maintain the wood structure

1mm

Carburization Carbon \rightarrow CaC₂

Highly controlled heterogeneous gas/solid reaction between gaseous Ca and solid carbon.

Oxidation $CaC_2 \rightarrow CaO$

Two chemical reactions are competing in the

oxidation process.

$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$	$2CaC_2 + 5O_2 \rightarrow 2CaCO_3 + 2CO_2$
$Ca(OH)_2 \rightarrow CaO + H_2O$	$CaCO_3 \rightarrow CaO + CO_2$
$CaC_2 + H_2O \rightarrow CaO + C_2H_2$	$2CaC_2 + 5O_2 \rightarrow 2CaO + 4CO_2$

3mm

STAGES OF BIOMORPHIC TRANSFORMATION OF WOOD

 $CaO + CO_2 \rightarrow CaCO_3$

Carbonation of CaO is carried out at high temperature and CO_2 pressure to achieve effective CO_2 diffusion in the whole scaffold.

 $10CaCO_3 + 6(NH_4)_2HPO_4 + 2H_2O = Ca_{10}(PO_4)_6(OH)_2 + 6(NH_4)_2CO_3 + 4H_2CO_3$

Diffusion Constraints of Scaffolds

 Tissue engineering scaffold is typically an open-cell foam structure. Oxygen and nutrients are supplied from the liquid cell culture medium via diffusion.

2. Cell seeding on scaffold. Many techniques available. Simplest form is pipetting.

Diffusion Constraints of Scaffolds

3. Cells start to proliferate and migrate into the pores of the scaffold.

4. Cells fully **colonise the pores** and start to **lay down** their own extracellular matrix **(ECM)**

Diffusion Constraints of Scaffolds

5. Top layer of cells consume most oxygen and nutrients in addition to limiting the diffusion of these components

6. Reducing amount available for pioneering cells migrating deep into the scaffold.

7. Eventually, **cellular migration/ECM deposition is halted** due to the lack of oxygen and nutrients supply.

8. Layer of cells that can survive on the diffusion of oxygen and nutrients from the medium is called the cellular penetration depth (Dp).

Scaffold Fabrication Techniques

Methods	Merits	Demerits	References
Solvent casting/ particulate leaching	Control over Porosity, pore size and crystallinity	Limited mechanical property, residual solvents and porogen material	Ma, 2007; Xiang et al., 2006
Porogen leaching	Controlled over porosity and pore geometry	Inadequate pore size and pore interconnectivity	Mano et al., 2007
Gas foaming	Free of harsh organic solvents, control over porosity and pore size	Limited mechanical property, inadequate pore interconnectivity	Ikada., 2006
Self assembly	Control over porosity, pore size and fiber diameter	Expensive material, complex design parameters	Zhang et al., 2003; 2006
Electrospinning	Control over porosity, pore size and fiber diameter	Limited mechanical property, pore size decrease with fiber thickness	Liang et al., 2007
Phase separation	No decrease in the activity of the molecule	Difficult to control precisely scaffold morphology	Smith et al., 2006

Scaffold Fabrication Techniques

Rapid prototyping	Excellent control over geometry, porosity, no supporting material required	Limited polymer type, highly expensive equipment	Hutmacher et al., 2000; 2001
Fiber mesh	Large surface area for cell attachment, rapid nutrient diffusion	Lack the structural stability	Chen et al., 2002
Fiber bonding	High surface to volume ratio, high porosity	Poor mechanical property, limited applications to other polymers	Mooney et al., 1996
Melt molding	Independent control over porosity and pore size	Required high temperature for non amorphous polymer	Thompson et al., 1995 a; b
Membrane lamination	Provide 3D matrix	Lack required mechanical strength, inadequate pore interconnectivity	Maquet & Jerome, 1997
Freeze drying	High temperature and separate leaching step not required	Small pore size and long processing time	Boland et al., 2004; Mandal & Kundu, 2008

How to mímic natural bone for substitute processing? 1st Material composition

Cells in various tissues can sense the elasticity of the matrix and transduce the mechanical signals into various physiological responds.

Therefore, biomaterials with matched mechanical properties with the defective tissue have good bioadaptability

A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126 (2006) 677–689.

Tissue elasticity (A) and stem cell differentiation on glass matrix with various mechanical properties
Comparison of the three different macroporosities

Ice-templating

Cell colonization with MG63 osteoblasts?

366/54 μm, P= 51%, t=52μm

PMMA beads 450μm

1 day

S.Chamary PhD LMCPA-UVHC