TOTAL HIP ARTHROPLASTY

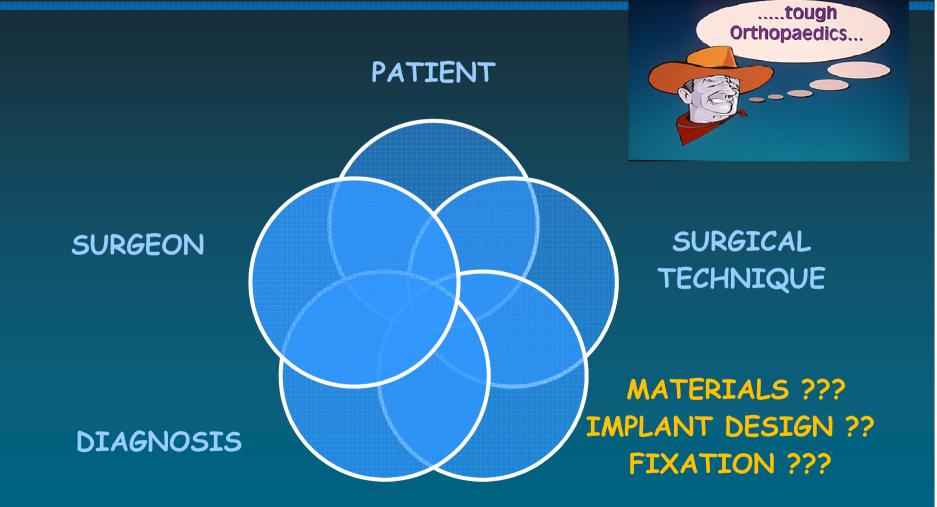
CURRENT ASPECTS DESIGN, FIXATION AND BEARING SURFACES

Th. KARACHALIOS, MD, DSc PROFESSOR IN ORTHOPAEDICS EDITOR IN CHIEF HIP INTERNATIONAL

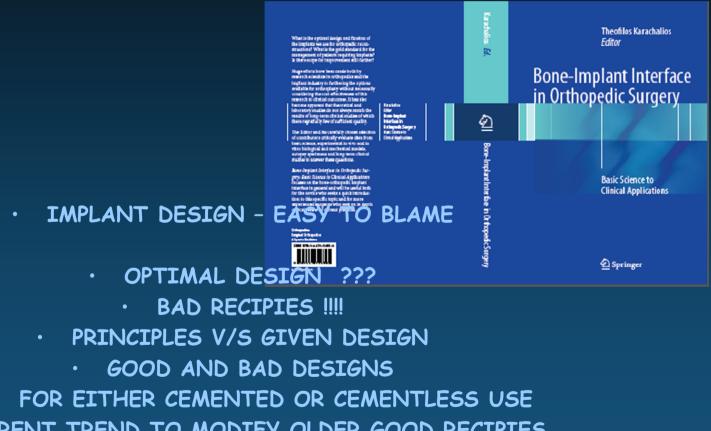
> UNIVERSITY OF THESSALIA HELLENIC REPUBLIC

TOTAL JOINT ARTHROPLASTY

- FROM THE BEGINNING OF 60's
- EXCELLENT CLINICAL RESULTS AT 15-20 YEARS
 - INCIDENCE OF ASEPTIC LOOSENING 2-20%
 - TECHNIQUE
 - BASIC PRINCIPLES
 - VARIATIONS
 - ERRORS



Με τσιμέντο-Χωρίς Τσιμέντο



TOTAL JOINT ARTHROPLASTY SURVIVAL

ortho.med.uth

TOTAL JOINT ARTHROPLASTY

CURRENT TREND TO MODIFY OLDER GOOD RECIPIES

ortho.med.uth

ΟΛΙΚΗ ΑΡΘΡΟΠΛΑΣΤΙΚΗ ΙΣΧΙΟΥ ΜΕ ΤΣΙΜΕΝΤΟ

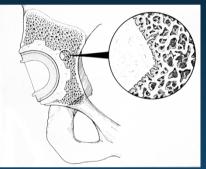
٠

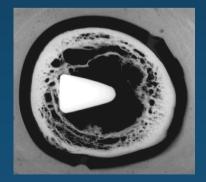
ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΙΚΕΣ ΣΥΝΔΕΣΗΣ ΤΣΙΜΕΝΤΟΥ ΚΥΠΕΛΙΟ ΠΑΡΑΣΚΕΥΗ ΕΠΙΦΑΝΕΙΑΣ ΒΟΥΡΤΣΑ ΕΚΠΛΥΣΗ ΚΑΤΑ ΩΣΕΙΣ ΟΣΤΟΥΝ ΜΑΝΔΥΑΣ ΤΣΙΜΕΝΤΟΥ ΑΙΜΟΣΤΑΣΗ ΜΥΕΛΙΚΗ ΤΟΠΟΘΕΤΗΣΗ ΓΑΖΩΝ ΚΟΙ ΑΙΜΟΣΤΑΤΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΙΚΗ ΑΝΑΙΣΘΗΣΙΑΣ 8mm ΠΑΧΟΣ <50 -22mm KE重A人H ΑΠΟΦΡΑΞΗ ΑΥΛΟΥ ΙΛΑΣΤΙΚΟ ΤΣΙΜΕΝΤΟ 50-60mm -28mm KE至A人H ΤΣΙΜΕΝΤΟ ΣΥΣΤΑΣΗ > 60mm - 32mm KE ⊈AAH ύουσια ποθυμερισμού ΜΗΡΙΑΙΑ ΠΡΟΘΕΣΗ ΠΑΡΑΣΚΕΥΗ Κενό Φυνοκέντοηση ΜΑΝΔΥΑΣ ΤΣΙΜΕΝΤΟΥ ΤΟΠΟΘΕΤΗΣΗ ΤΣΙΜΕΝΤΟΥ 2mm, 3-4mm $\Pi A X O \Sigma$ ΕΙΣΑΓΩΓΗ ΕΓΚΑΡΣΙΑ ΔΙΑΤΟΜΗ ΧΩΡΙΣ ΣΗΜΕΙΑ ηση συμπίεσης -μηχανική -δάκτυδα ΣΥΓΚΕΝΤΡΩΣΗΣ ΦΟΡΤΙΩΝ ΤΟΠΟΘΕΤΗΣΗ ΠΡΟΘΕΣΗΣ Καθύστέρηση σύμφωνα με τις ιδιότητες του τσιμέντου Περαιτέρω συμπίεση ΣΤΡΟΦΙΚΗ ΣΤΑΘΕΡΟΤΗΤΑ ΜΕ ΕΠΙΠΕΔΗ ΠΡΟΣΘΙΑ ΚΑΙ ΟΠΙΣΘΙΑ ΕΠΙΦΑΝΕΙΑ ΚΑΙ ΟΜΑΛΗ ΕΣΩ COBALT-CHROME ΛΕΙΑ -ΠΡΟΕΠΙΚΑΛΥΨΗ ΤΕΧΝΙΚΗ ΤΣΙΜΕΝΤΟΥ ΠΡΟΕΤΟΙΜΑΣΙΑ ΟΣΤΙΚΗΣ ΚΟΙΤΗΣ ΓΕΝΕΕΣ ΤΣΙΜΕΝΤΟΥ ΣΥΜΠΙΕΣΗ ΘΕΡΜΟΚΡΑΣΙΑ ΧΡΟΝΟΣ

ΕΠΙΦΑΝΕΙΑ ΕΠΑΦΗΣ ΤΣΙΜΕΝΤΟΥ - ΟΣΤΟΥ

ο μηχανισμος συνδεσης του τσιμεντου εξαρταται απο την ικανοτητα του πολυμερους να σχηματιζει ενα δικτυο συνδεσης μεταξυ ανωμαλιων του οστου και της επιφανειας της προθεσης

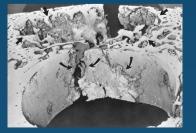
ΑΡΧΙΚΗ ΟΣΤΙΚΗ ΚΑΚΩΣΗ

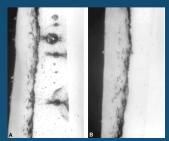

ΑΦΑΙΡΕΣΗ ΟΣΤΟΥ
 ΝΕΚΡΩΣΗ ΟΣΤΟΥ
 ΘΕΡΜΙΚΗ ΚΑΚΩΣΗ ΤΣΙΜΕΝΤΟΥ


ΝΕΚΡΟΤΟΜΙΚΕΣ ΜΕΛΕΤΕΣ ΣΕ ΑΣΘΕΝΕΙΣ ΜΕ ΣΤΑΘΕΡΕΣ ΠΡΟΘΕΣΕΙΣ

- ΣΤΕΝΗ ΣΥΝΔΕΣΗ ΤΣΙΜΕΝΤΟΥ ΚΑΙ ΕΝΔΟΣΤΙΚΗΣ ΕΠΙΦΑΝΕΙΑΣ ΤΟΥ ΟΣΤΟΥ
- · ΙΝΩΔΗΣ ΙΣΤΟΣ ΣΤΑ ΠΡΩΤΑ 2 cm ΤΗΣ ΖΩΝΗΣ 7
- · ΟΣΤΙΚΗ ΑΝΑΚΑΤΑΣΚΕΥΗ ΜΕΤΑΞΥ ΕΝΔΟΣΤΕΟΥ ΚΑΙ ΦΛΟΙΟΥ

Jasty JBJS 1986, 1990 Kwong JBJS 1992 Maloney JBJS 1995

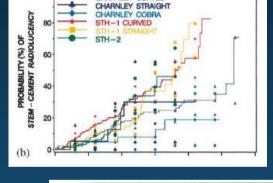

ortho.med.uth

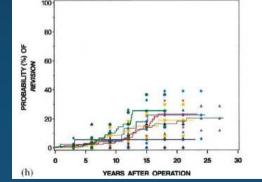

BONE-CEMENT INTERFACE

EARLY AND LATE STABLE FIXATION

BONE - CEMENT INTERFACE
IMPLANT CEMENT INTERFACE
1992 -2000 213 HYBRID ELITE THA

ortho.med.uth

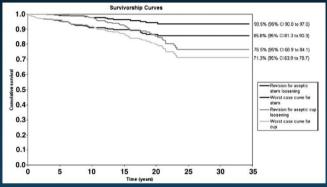

LFA - CHARNLEY EVOLUTION OF STAINLESS - STEEL

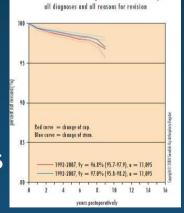


THE EFFECT OF ALLOY AND DESIGN

- FEMORAL STEMS
 MADE OF TITANIUM
 - WERE AT GREATER RISK
 - · OF DEVELOPING
 - RADIOLUCENT LINES
 - ENDOSTEAL SCALLOPING
 - ASEPTIC LOOSENING
 - · AT 25 YEARS FUP

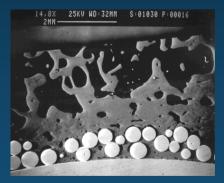
Ebramzadeh Biomaterials 2004




www. ortho-uth.org

THE EXETER HIP

- · UNIQUE EXAMPLE
 - SURVIVAL FEMORAL STEM RATE OF 93.5% AT 33 YEARS
 - 3.23% REVISION RATE
 - SURVIVAL ACETABULAR CUP RATE OF 76.5 AT 33 YEARS
 - END POINT REVISION FOR ASEPTIC LOOSENING



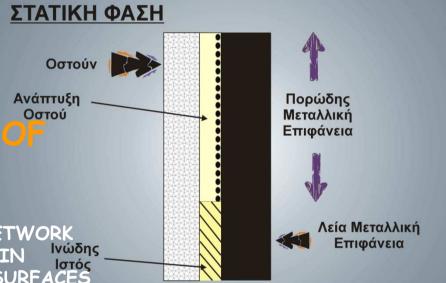
Exeter Duration (Exeter Polished)

Ling J Arthroplasty 2009

BONE IMPLANT INTERFACE INCORPORATION

IMPLANTATION

INITIAL BONE REACTION BONE INTERFACE NECROSIS REVASCULARIZATION


REPARATIVE PHASE

 HAEMORRAGE
 INCREASED BLOOD SUPPLY
 INFLAMMATION (24 H)
 LINING CELLS - FIBROBLASTS (3RD D) CHODROCYTES, OSTEOBLASTS (1ST W)
 WOOVEN BONE (2ND WEEK)
 PRIMARY STABLE MEMBRANE (4-6 W)
 STABLE INTERFACE (4 M)

• FRACTURE HEALING LIKE PROCESS

STABLE BONE-IMPLANT INTERFACE

BONE FORMATION ON POROUS SURFACES STABLE IMPANTS

 BONE MATRIX WITHOUT COLLAGEN NETWORK
 OSTEOPONTIN-BONE CIELOPROTEIN Ινώδης Ιστός DIRECT BONE FORMATION ON POROUS SURFACES (70%)

FIBROUS TISSUE ON POROUS SURFACES (30%)
 FIBROUS TISSUE ON SMOOTH SURFACE
 (WELL ORGANISED DENCE COLLAGEN NETWORK)

Davies Anat Rec 1996

Davies Anat Rec 1996 Engh JBJS 1995

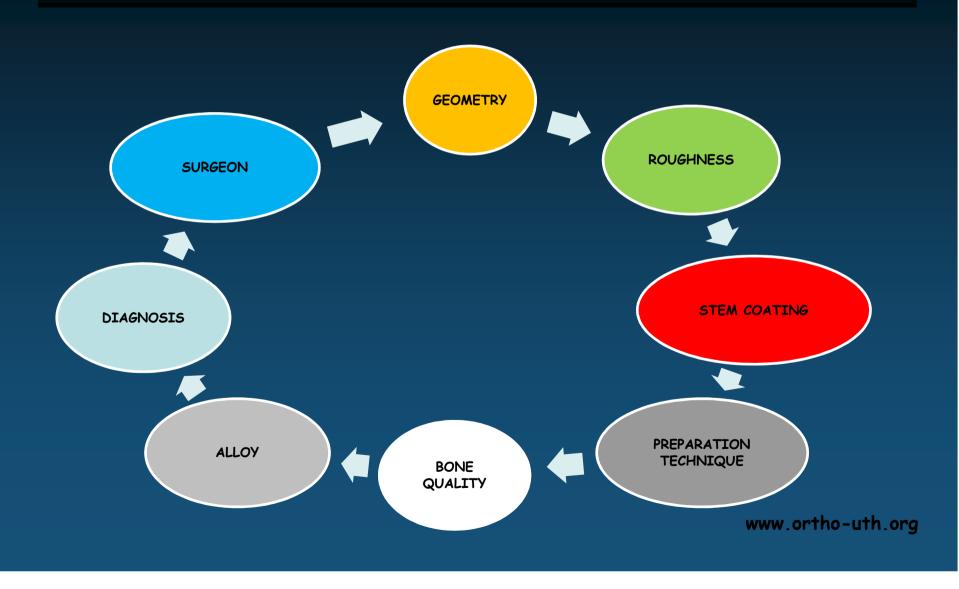
HA - BONE INTERFACE

BIOACTIVE MATERIALS -HA

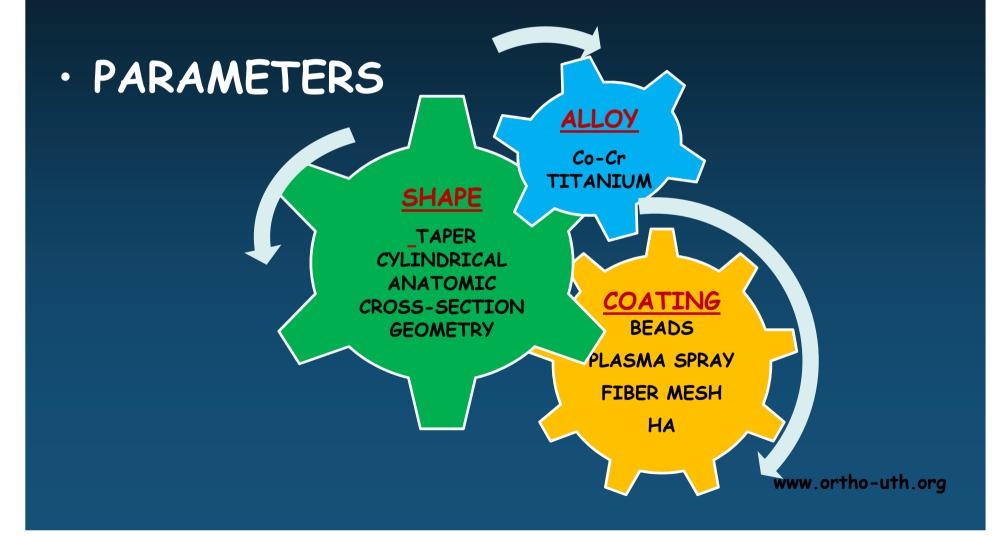
- OSTEOINDUCTIVE-OSTEOCONDUCTIVE PROPERTIES NO FIBTOUS TISSUE IN THE INTERFACE INSTABILITY
- TITANIUM ALLOY, HIGH CRYSTALLINITY HA, 50-75µm THICKNESS, PLASMA SPRAY TECHNIQUE • THIRD BODY WEAR WHEN THICKNESS HA >75µm Duchene Clin Orth RR 1992 Dalton JBJS 1995 Klein J Biom Mat Res 1994

• TEN YEARS FOLLOW-UP

1.5% LOOSENING OF FEMORAL STEM
 20% LOOSENING OF ACETABULAR CUP



AMOUNT OF POROUS COATING


- · EXTEND OF COATING DEPENDS ON
 - STEM PHILOSOPHY
 - TYPE OF COATING
 - STEM MATERIAL
- TAPERED TITANIUM STEM
 - PROXIMAL PRESS FIT
 - PROXIMAL COATING
 - · LOADED AREA IS COATED
 - "NOTCH SENSITIVE"
- · CYLINDRICAL CoCr STEM
 - MORE EXTENSIVELY COATED
 - NO ALTERED STRENGTH

VARIABLES CEMENTLESS LONG TERM FIXATION

DESIGN PRINCIPLES CEMENTLESS FEMORAL STEMS

COBALT - CROMIUM ALLOYS

· COMPOSITIONS MANUFACTURED BY

- CASTING (ASTM F17 ALLOY)
- FORGING (ASTM F799 ALLOY)
 - SUPERIOR MECHANICAL PROPERTIES
- COLD WORKING (ASTM F90" AND" F562" Metals
 - SUBSTANTIAL MECHANI
- · CHROMIUM CORROSION
- RANGE OF MECHANICAL F
- QUALITY CONTROL PROBLE
 - CASTING PROCESS

DISADVANTAGES

- CREVICE CORROSION AND STRESS CORROSION
- FIXATION DEVICES AND ARTHROPLASTIES
 - STEMS HEADS ARTICULATING SURFACES

ontho	_ 114	
ortho	- 11 1	

[(CAL PI Material	ST APER Designation	TIES	Elastic Modulus (GPa)	Yield Strength (MPa)	Ultimate Strength (MPa)	Endurance Limit (MPa)
	Stainless steels	F55, F56, F138, F139	Annealed	190	331	586	241-276
	DEC	TCTA	30 b f al- vonced	A15 / F	792	930	310-448
U	<u>KLJ</u>		N fore	90	1213	1351	820
	Cobalt alloys	F76	As cast/annealed	210	448-517	655-889	207-310
			Hip*	253	841	1277	725-950
	$\boldsymbol{\mathcal{C}}$	F799	Hot forged	210	896-1200	1399-1586	600-896
		F90	Annealed	210	448-648		951-1220
D)		-D $-T$	44% Cold-worked	210	1606	1896	585
	ROFE	¢56	He forged	232	965-1000	1200	500
-			Cold-forged/aged	232	1500	1795	689-793
	That I V / alloy	F67	30% Cold-worked	110	485	760	300
-		F136	Forged annealed	116	896	965	620
			Forged/heat treated	116	1034	1103	620-689

HIP - hot isostatically pressed; ASIM - American Society for Testing and Materials. (Reproduced with permission from Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds): Biomaterials Science: An Introduction to Materials in Medicine. San Diego, CA, Academic Press, 1996.)

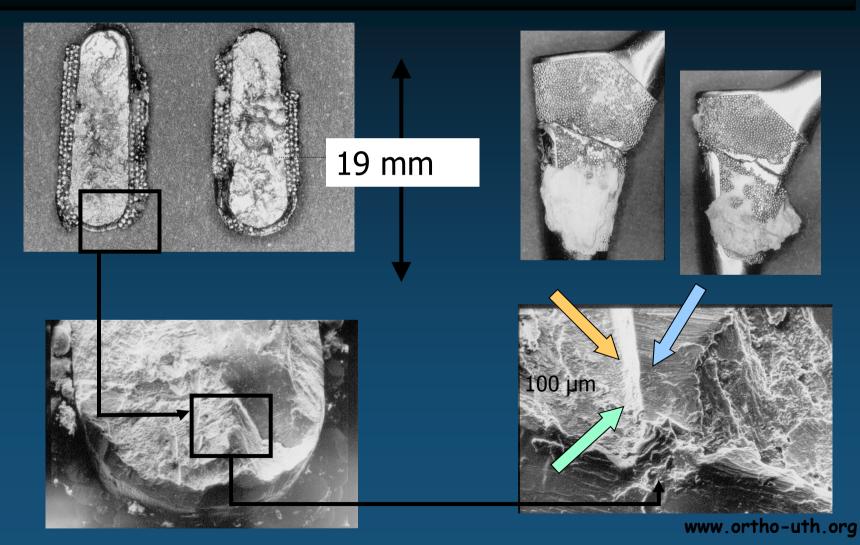
TITANIUM ALLOYS

• Ti-6Al-4V (ASTM F136)

- TITANIUM-ALUMINIUM-VANADIUM ALLOY

- · AEROSPACE TECHNOLOGY
- · HIGH STRENGTH TO WEIGHT
- LOW OXYGEN MANUFACTURIN
- · 2-PHASE FINE GRAINS
- OPTIMAL ??? MECHANICAL PROPE APPLICATIONS - LOW ELASTI

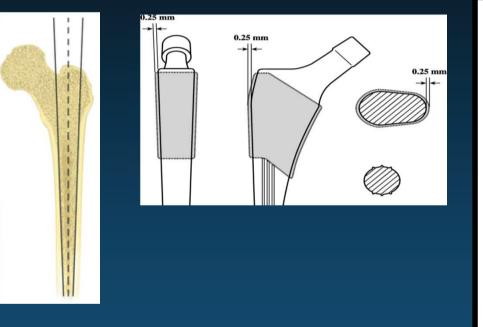
- DISADVANTAGES

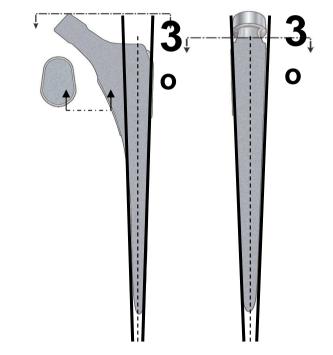

- NOTCH OR SCRATCH SENSITI ARTICULATING SURFACES
- SHARP ENDS-STRESS RISERS
- · LOW HARDNESS
 - MICROMOTION SIGNIFICANT WEAR
 - TITANIUM AND VANADIUM IONS
 - NIOBIUM

							(
ATIO	ASTM Designation	Condition	Elastic Modulus (GPa)	Yield Strength (MPa)	Ultimate Strength (MPa)	Endurance Limit (MPa)	
ainless steels	F55, F56, F138, F139	Annealed	190	331	586	241-276	
		30% Cold-worked	190	792	930	310-448	
PERTI	IES F	ORONORTH	DP9AED	$\Box C^{1213}$	1351	820	
ba't llos	F75 C	As cast/annealed	210	448-517	655-889	207-310	
MOD		Hip*	253	841	1277	725-950	
	F799	Hot forged	210	896-1200	1399-1586	600-896	
	F90	Annealed	210	448-648		951-1220	
		44% Cold-worked	210	1606	1896	586	
	F562	Hot forged	232	965-1000	1206	500	
		Cold-forged/aged	232	1500	1795	689-793	
ti niu n ə' <i>l</i> oy —	F6'	Cold-worked	110	485	760	300	
C	F136	Forged annealed	116	896	965	620	
		Forged/heat treated	116	1034	1103	620-689	/

* HIP – hot isostatically pressed; ASTM – American Society for lesting and viaceriais. (Reproduced with permission from Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds): Biomaterials Science: An Introduction to Materials in Medicine. San Diego, CA, Academic Press, 1996.)

TITANIUM FEMORAL STEMS


FAILURE AT 2 YEARS Magnisalis, Karachalios, Hartofilakidis J Biomat Res 2003



WEDGE SHAPE

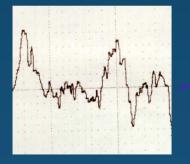
•INITIAL STABILITY •IMPROVED STRESS DISTRIBUTION •IMPROVED INCORPORATION

SHAPE

· 3 DEGREES WEDGE

IN THE FRONTAL AND SAGGITAL PLANE

• THE SHAPE OF THE TRANSVERSE SECTION ???


FIXATION

PROXIMAL LOAD TRANSFER 3X POINT FIXATION •MAXIMISES RIGIDITY •PROVIDES LONG-TERM STABILITY

TRANSITION OF COATINGS IN AND ON-GROWTH

- In-growth
- On-growth
- · No-growth

Grit blasted surface roughness as measured by profilometry Grit-blasting for on-growth

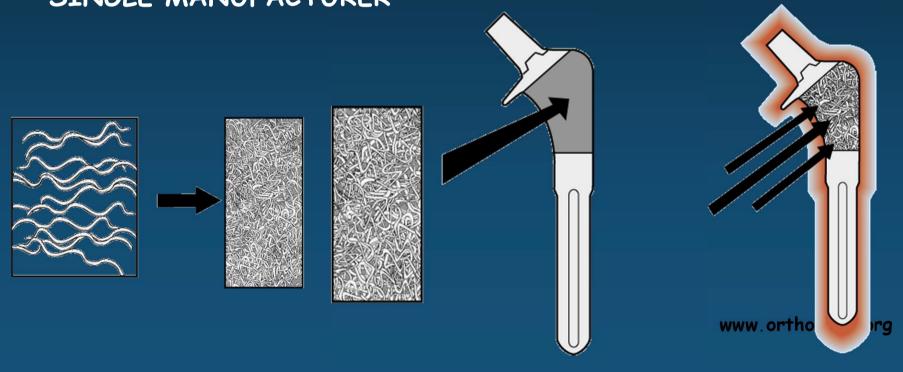
PLASMA SPRAY

· ROUGH COATING

- · WEAKER MECHANICAL BOND
- · ABRASION AND INCREASED WEAR
- TITANIUM ALLOY SURFACES ONLY
 - STRENGTH OF LONG REVISION STEMS
- · LOW MANUFACTURING COST

MANUFACTURING OF PLASMA SPRAY

- · HEAT TI POWDER TO MOLTEN STATE
- · SPRAYED ON STEM IN INERT GAS
- · SOLIDIFIES ON SURFACE
- · MECHANICAL BOND



DIFFUSION BONDED WIRES

- BONE-COATING INTERLOCKING
 - INGROWTH vs ONGROWTH
- · LOWEST ATTACHMENT STRENGTH
- · ALWAYS APPLIED IN A METALLIC POCKET
 - INCIDENCE (12.2%) OF DEBONDING
- NOT A ROUGH COATING
- · TITANIUM ALLOYS ONLY
 - NO EXTENSIVELY COATED LONG STEM

MANUFACTURING OF FIBER MESH PAD

- · PRESSING METAL FIBERS INTO A MESH
- · PAD APPLIED ON STEM WITH HEAT AND PRESSURE
- · LOWER TEMPERATURE THAN SINTERING
- NO NEED FOR SUBSEQUENT HEAT TREATMENT
- SINGLE MANUFACTURER

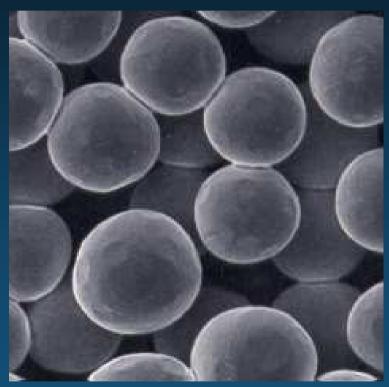
SINTERED BEADS

- WIDEST CLINICAL USE
- · EXCELLENT BOND STRENGTH
- BONE-COATING INTERLOCK (INGROWTH)
- · HIGH RESISTANCE TO ABRASION
- Ti AND CoCr
- · LONGEST CLINICAL FOLLO

SINTERED BEAD MANUFACTURING

•APPLIED WITH BINDER •HIGH TEMPERATURE AT NO PRESS •BINDER DISSIPATES •STRONG METALLURGICAL BOND •SUBSEQUENT HEAT TREATMENT NECESSARY •MACHINE CRITICAL AREAS

Machining

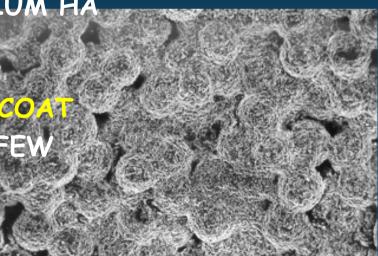

Sintering Heat treatmentww.ortho-uth.org

OPTIMUM PORE SIZE RANGE


- **OPTIMUM RANGE 100-400**μ
- · BONE CAN NOT GROW IN SMALLER PORES
- TAKES LONGER TO GROW IN LARGER PORES
- PORE SIZE CAN BE MEASURED WITH A VARIETY OF METHODS

VOLUME PERCENT POROSITY

- · VOLUME OF VOID SPACE
- · BONE GROWS IN VOID
- RANGE STUDIED IS 30-40%
 - 80-90%???

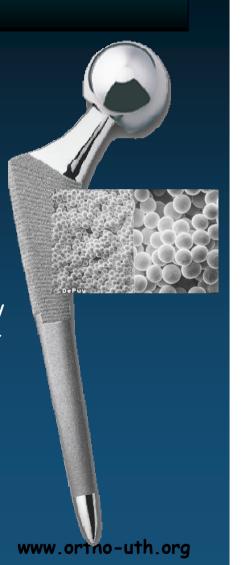


HA COATING IMPLANT - HA INTERFACE

DUOFIX HA COATING

- PRECISION CONTROLED THERMAL PROJECTION PLASMA SPRAY APPLICATION OF CERAMIC CALCIUM HA OVER POROCOAT
- OPTIMUM COATING THICKNESS MAINTAINS POROSITY OF POROCOA
- HA COATING DISPPEARS AFTER FEW WEEKS (35 micron)

SUMMIT


- TITANIUM ALLOY TI 6AI-4V (3-DEGREE TAPERED STEM)
- · PROXIMAL FIXATION
- · POROCOAT POROUS COATING

•Pore size of 250 microns:

•"...a pore size range of approximately 50 to 400 µm

"The Optimum Pore Size for the Fixation of Porous-Surfaced Metal Implants by the Ingrowth of Bone" J.D. Bobyn, Ph.D., R. M. Pillar, Ph.D., , H. U. Cameron, M.D. and G. C. Weatherly, Ph.D. Basic Science and Pathology Section III October 1979

- RADIAL ZTT STEPS
- · DUOFIX HYDROXYAPATITE COATING
- · DISTAL GRIT-BLASTED SURFACE

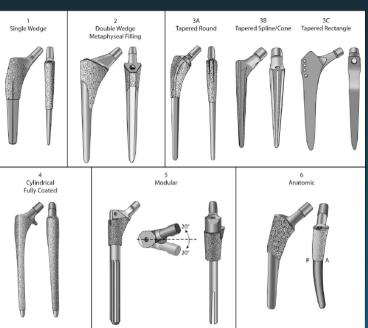
PROXIMAL COATING

- · ZTT RADIAL STEPS
- STEPPED TRANSITION
- LOAD TRANSFER
- INCREASE SUMMIT POROUS SURFACE AREA BY 13%
- ROUGH, 20-GRIT BLAST SURFACE DISTAL STEM Ra 125 TO 150 MICRO-INCH-BONE ONGROWTH
- · POLISHED DISTAL END

ANATOMICAL VARIATIONS

• HIP MORPHOLOGY

Dorr Bone 1993


www.ortho-uth.org

TAPERED Press Fit Femoral St

CEMENTLESS FEMORAL STEM DESIGNS

Khanuja JBJS 2011 Berry AAOS 2000

- A CLASSIFICATION SYSTEM
- BASED ON
 SHAPE AND ALLOY PARAMETERS
- SURFACE TYPE PARAMETERS ????
- A MODIFICATION

TYPE 1A SINGLE WEDGE TAPERED PROXIMAL FIXATION

NUMEROUS REPORTS

FIRST GENERATION ROUGH GRIT BLASTED SURFA

- SURVIVAL RATE AT 17 YRS 98.8%
- THIGH PAIN 25%
- STRESS SHIELDING 84%

Muller Arch Orthop Trauma Surg 2009

- YOUNG PATIENTS
- SURVIVAL RATE AT 20 YRS 90%
- NO THIGH PAIN

Aldinger JBJS 2009

TYPE 1B SINGLE WEDGE

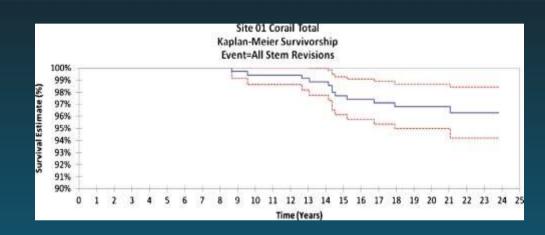
TAPERED PROXIMAL FIXATION

NUMEROUS REPORTS

- FIRST GENERATION PLASMA SPRAY
- SECOND GENERATION POROUS COATED (SINTERED
 - SURVIVAL RATE AT 22 YRS 99%
 - THIGH PAIN 3%
 - YOUNG PATIENTS
 - DORR A AND B
 - SURVIVAL RATE AT A MINIMUM 10 YRS 94%
 - THIGH PAIN 4%
 - EXPANDED INDICATIONS
 - RA ARTHRITIS, DORR TYPE C
 - SURVIVAL RATE AT 10 TO 15 YRS ~100%
 - MILD THIGH PAIN

Burt JBJS 1998 Purtil Clin Orthop 2001 Keisu JBJS 2001

TYPE 2A DOUBLE WEDGE


METAPHYSEAL FILLING - TAPERED PROXIMAL FIXATION

- EXCELLENT MEDIUM AND LONG TERM RESULTS
- GRIT-BLASTED AND HA COATED
- SURVIVAL RATE AT 17-24 YRS 99.2 TO 99.5%

Capello JBJS 200 Epinette Hip Int 200

- YOUNG PATIENTS
- SURVIVAL RATE AT 15 YRS 95-100%
- THIGH PAIN 7-15%

TYPE 2B DOUBLE WEDGE METAPHYSEAL FILLING - TAPERED PROXIMAL EXATION

- EXCELLENT LONG TERM RESULTS
- SURVIVAL RATE AT 20 YRS 97%
- CUP FAILURES
- STRONG DATA FOR OSTEOPOROTIC BONE
 - HEMI-ARTROPLASTIES

Vidalain Int Orthop 2011

TOTAL HIP ARTHROPLASTY HA-COATED

180 CORAIL IMPLANTS
15-25 YEARS OF FOLLOW-UP
5 CUP REVISIONS
NO MIGRATION AND ASEPTIC LOOSENING OF THE FEMORAL STEM Karachalios, Diakomopoulos Karachalios J Arthroplasty 2004

TYPE 3C TAPERED RECTANGLE

- UNIQUE DESIGN
- WIDELY USED IN EUROPE EXCELLENT LONG TERM RESULTS
- NO MODIFICATIONS
- DORR C
- SURVIVAL RATE AT 15-20 YRS 95-98%
- THIGH PAIN 2-4%
- STRESS-SHIELDING 15-30%

Carcia -Cimberelo JBJS 2003 Grubl JBJS 2006 Reigstad Acta Orthop Scand 2008 Suckel J Arthoplasty 2009

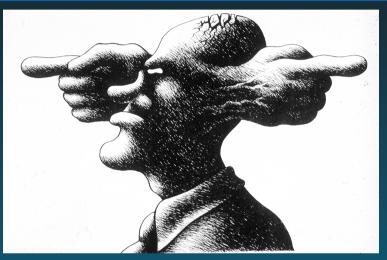
TYPE 4 CYLINDRICAL

FULLY COATED - DISTALLY FIXED

- A NUMBER OF LONG TERM CLINICAL STUDIES
- EXCELLENT CLINICAL RESULTS NORTH AM
- FIRST GENERATION
- COBALT CHROMIUM 80% PROX COATED
 - SURVIVAL RATES AT 22 YRS 98%
 - YOUNG PATIENTS
 - SURVIVAL RATE AT 10- 15 YRS 96-99%

Engh Clin Orthop 2001 Belmont JBJS 2008 McAuley Clin Orthop 2004 Moyer Clin Orthop 2010

- STRESS SHIELDING
- THIGH PAIN 4-8%


- LARGER STEMS INFERIOR RESULTS

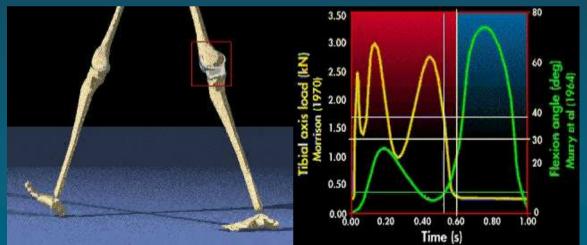
Nourbash Clin Orthop 1998 Engh Clin Orthop 1998 Engh Clin Orthop 1988

Engh J Arthoplasty 2009

METALS AND ALLOYS COST - EFFECTIVENESS

SUPER-ALLOYS AND DESIGNS IN ORTHOPAEDICS

??????

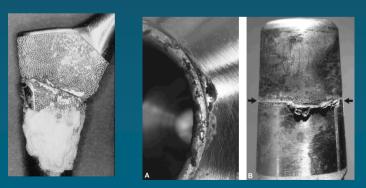

MODERN THA

- COMBINATION OF IMPROVEMENTS
 - IMPLANT INTERGRATION
 - BEARING SURFACES
 - STRATEGIES TO TARGET THE CELLULAR COMPONENTS

Abu-Amer Arthritis Research & Therapy 2007

PERTICLES GENERATION

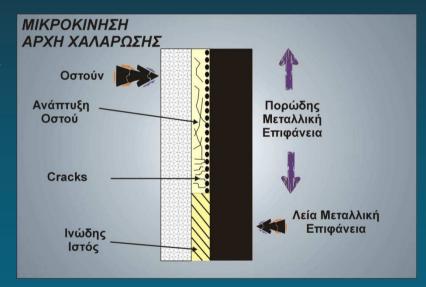
- TENS OF THOUSANDS OF PARTICLES (<5µm)
 - EVERY GAIT CYCLE



ASEPTIC LOOSENING AETIOLOGY, PATHOGENESIS, CELLULAR RESPONCE

- AETIOLOGY
 WEAR DEBRIS FROM
 - · PROSTHETIC JOINT ARTICULATION
 - MODULAR INTERFACES
 - NONARTICULATING INTERFACES

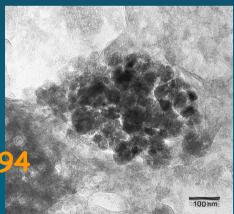
 IMPINGEMENT AREAS Harris Clin Orthop 1995 Goldring JBJS 1993 Abu-Amer Arthritis Research & Therapy 2007



UNSTABLE BONE-IMPLANT INTERFACE

FAILURE - ASEPTIC LOOSENING

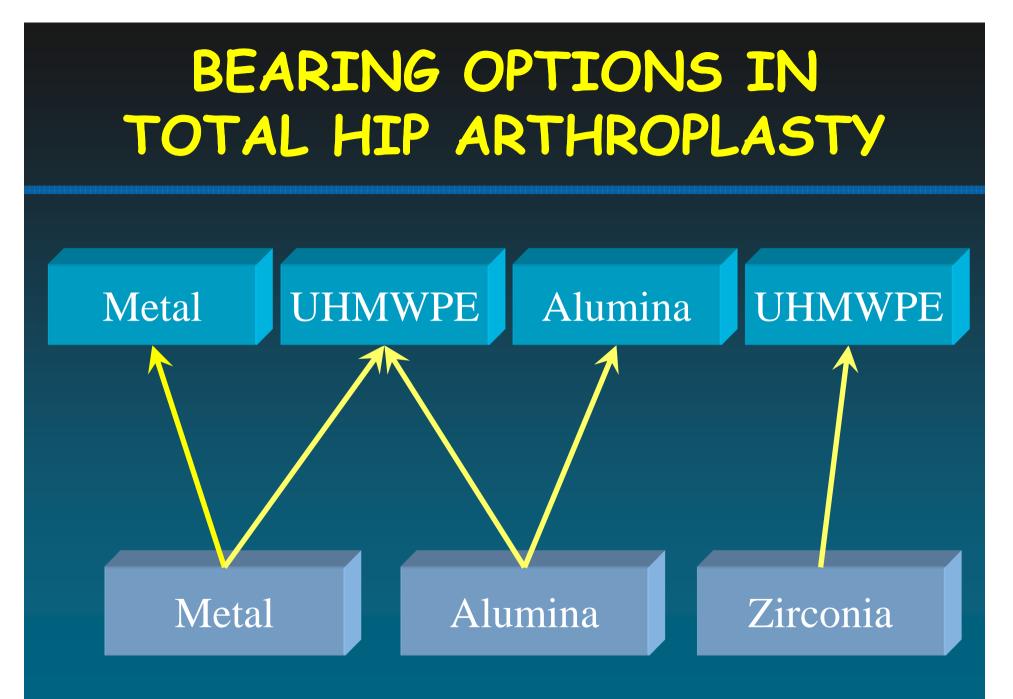
- ADAPTATION TIME FACTOR
- CYCLIC LOADING MICROMOTION
- FATIQUE TISSUE DAMAGE REMODELING
 - MICROFRACTURES MICROCRAKS
 - PUMBING HYDRODYNAMIC EFFECT
 - WEAR PARTICLESS


ASEPTIC LOOSENING AETIOLOGY, PATHOGENESIS, CELLULAR RESPONCE

PARTICLE PHAGOCYTOSIS REPRESEN IMPORTANT COMPONENT OF THE C RESPONSE

- THE SIZE OF THE PARTICLES
- PARTICLES RANGING FROM 0.2µm TO 10µm UNDERGO PHAGOCYTOSIS BY MACROPHAGES

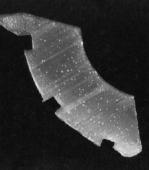
Gelb J Orthop Res 199



TOTAL JOINT REPLACEMENT

ASEPTIC LOOSENING
 OF IMPLANTS
 DISABLING CONDITION

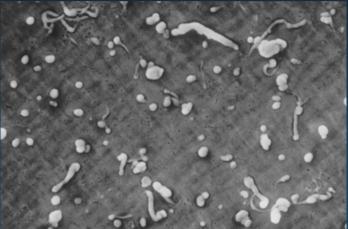
- AFFECTS PATIENTS 10 TO 20 YEARS AFTER JOINT REPLACEMENT SURGERY

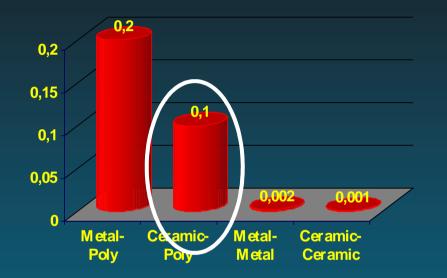

www.ortho-uth.org

POLYETHYLENE

- RELIABLE LONG TERM PERFORMANCE •
 - 20 YEARS FOLLOW UP
- OLD POLYETHYLENE
 - VOLUMETRIC WEAR RATE (50-100mm³) 0.1-0.2mm /y
 - OSTEOLYSIS
 - ATTEMPT TO IMPROVE PERFORMANCE (eg HYLAMER) ????
- CONVENTIONAL POLYETHYLENE
 - AVOIDANCE OF OXIDATIVE DEGRADATION
 - · GAMMA IRRADIATION IN AIR
 - · GAMMA IRRADIATION IN INERT
 - GAS STERILIZATION

Wroblevski JBJS 2000


Pryor JBJS 1992



BASIC SCIENCE WEAR PARTICLES

- · CONVENTIONAL PE
 - SPHERICAL IN SHAPE
 - SIZE 0.1 TO 1µm (MEAN 0.5µm)
 - FIBRILS OF PARTICLES (W:0.3-1 µm, L:10-23µm)
 - CUP SCREW HOLES
 - SLIGHTLY BIGGER PARTICLES
 - SIZE PLAYS A ROLE IN BIOLOGICAL ACTIVITY

IMPROVEMENT ??

THE LINERTHE HEAD

POLYETHYLENE COMPARISON

Trade Name	Company	X-link Protocol	Annealing Step	Sterilization Method	Quoted Volumetric Wear Reduction	Wear Reduction vs. Standard Poly
Reflection XLPE	Smith and Nephew	Gamma 10 Mrad (room temp)	melt	Gas (VHP or EtO)	98%	98%
Longevity	Zimmer	E-beam 10 Mrad (~40 ° C)	melt	Gas (VHP Gas Plasma)	89%	94%
Durasul	Centerpulse	E-beam 9.5 Mrad (~125 °C)	melt	Gas (EtO)	100%ª	No correlation possible
Marathon	Depuy / J & J	Gamma 5 Mrad (room temp)	melt	Gas (VHP Gas Plasma)	86%	87%
Crossfire	SHO	Gamma 7.5 Mrad (room temp)	Below melt	Gamma (N ₂) 2.5 Mrad	90%	94%
ArCom	Biomet	none	none	Gamma (N ₂) 3.3 Mrad	40%	45%

CROSS LINKED PE CLINICAL PERFORMANCE

ACETABULAR COMPONENT DESIGN

- MINIMAL DAMAGE TO PE
- CLOSE PE LINER AND SHELL CONFORMITY
- EVEN DISTRIBUTION OF STRESSES
- REDUCED BACKSIDE WEAR
- FEW SCREW HOLES
- LINERSHELL LOCKING MECHANISM
- PE THICKNESS

• TECHNIQUE

- COMPONENT POSITIONING AND SOFT TISSUE TENSION

.... CONFOUNDING FACTORS....

FACTS METAL ON METAL

· RETRIAVAL STUDIES

- FIRST GENERATION METAL-METAL BEARINGS WITH LONG IN VIVO SERVICE DEMONSTRATE LOW WEAR OF THE BEARING WITHOUT EVIDENCE OF ADVERSE LOCAL OR DISTANT TISSUE REACTIONS

Schmalzried J Arthroplasty 1996

McKellop Clin Orthop 1996

Howie J Arthroplasty 2005

- WHEN THE DESIRED TRIBOLOGICAL CONDITIONS ARE MET, METAL-METAL WELL-TOLERATED AND CAN FUNCTION FOR THREE DECADES WITH LITTLE WEAR

> Campbell JBJS 2003 Clarke J Arthroplasty 2005 www.ortho-uth.org

- MATERIALS
 - HARDNESS Co, Cr
 - CARBON RICH COMPOUNDS OF Co, Cr, Mo
- MACROGEOMETRY
 - DIAMETER
 - CLEARANCE (LOWER LIMIT OF 20µm)
- MICROGEOMETRY
 - SURFACE TOPOGRAPHY
- · LUBRICATION
 - FLUID FILM LUBRICATION

Schmidt Clin Orthop 1996

CLEARANCE

CONTACT

- · CLEARANCE
 - SMALL CLEARANCE LEADS TO EQUATORIAL CONTACT
 - HIGH FRICTION AND HIGH TORQUE
 - · IMPLANT LOOSENING
 - LARGE CLEARANCE LEADS TO REDUCED CONTACT AREA
 - LOSS OF EFFECTIVE LUBRICATION
 - RAPID WEAR

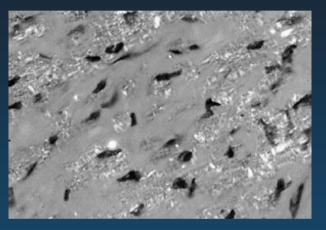
Schey Clin Orthop 1996

 RELATIVE POLAR CONTACT IS PREFFERED Lothari Clin Orthop 1996 Schmalzried J Arthroplasty 1996

· LUBRICATION

- A RATIO
 - FILM THICKNESS TO SURFACE ROUGHNESS RATIO
- IT IS ENHANCED BY THE USE OF
 - THE LARGER POSSIBLE HEAD
 - THE SMALLER CLEARANCE

Dowson J Eng Med 2006 Jacobs JBJS 1992


BASIC SCIENCE METAL PARTICLES

- SMALLER THAN PE PARTICLES
- NANOMETERS IN LINEAR DIMENSION
 - SIZE RANGES FROM 0.01 TO 5µm
 - THE MOST SMALLER THAN 50nm
- · LARGE AGGREGATE SURFACE AREA
 - LOCAL EFECTS
 - SYSTEMIC EFFECTS

Doorn J Biomed Mater Res 1998 Doorn Clin Orthop 1996 McDonald Clin Orthop 2003 Level 1 www. ortho-uth.org

ASEPTIC LOOSENING AETIOLOGY, PATHOGENESIS, CELLULAR RESPONCE

- · AETIOLOGY
 - CELLULAR RESPONSE VARIES

- NUMBER, CHARGE, COMPOSITION, SURFACE
- SIZE AND SHAPE OF PARTICLES
 - THE MAJORITY ARE LESS THAN 5µm
 - RANDOM SHAPE

Gonzalez J Biomed Mater Res 1996 Sabokbar J Mater Sci Mater Med 2003

ASEPTIC LOOSENING AETIOLOGY, PATHOGENESIS, CELLULAR RESPONCE

- PARTICLE CONCENTRATION AND SURFACE AREA (ESPECIALLY METALLIC PARTICLES)
 - SECRETIONS BY VARIOUS TYPES OF CELLS
 - MONOCYTES CYTOKINES, PGE2, HEXOSAMINIDASE
 - · MACROPHAGE CELL LINES APOPTOSIS
 - COBALT AND VANADIUM TOXIC EFFECT ON FIBROBLASTS AND CHONDROCYTES

Jacobs JBJS 2006 Hirakawa Clin Orthop 2004 Shanbhag J Biomed Mater Res 2000 Shanbhag Clin orthop 1997 Shanbhag J Arthroplasty 1995 Shanbhag JBJS 1994

BASIC SCIENCE METAL PARTICLES

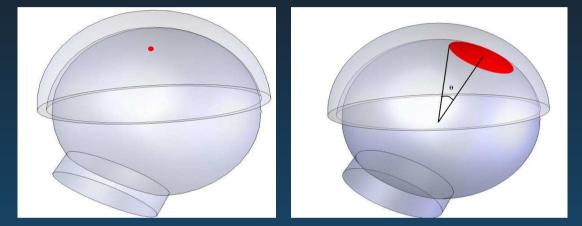
· LOCAL EFFECTS

- LOCAL TISSUE REACTION
 - No OF HISTIOCYTES ONE GRADE LOWER THAN METAL ON PE
 - · HISTIOCYTES STORE LARGER NUMBER OF METAL PARTICLES
 - · PINOCYTOSIS ISTEAD OF PHAGOCYTOSIS
 - REDUCED CELLULAR RESPONSE
 - · CYTOTOXICITY

BASIC SCIENCE METAL PARTICLES

· IN VITRO STUDIES

- LOW INCIDENSE OF OSTEOLYSIS
- DOSE RELATED RESPONSE TO METAL PARTICLES
 - LOW TO MODERATE CONCETRATIONS STIMULATE RELEASE OF CYTOKINES
 - · HIGHER CONCETRATIONS (Co, Cr) CYTOTOXIC
 - APOPTOSIS- CELL DEATH


Catelas Biomaterials 2003 Zhiri J Arthroplasty 1999

• WEAR RATES

- IN VITRO
 - VOLUMETRIC WEAR 0.09 TO 61nm³ PER MILLION CYCLES
 - · LINEAR 1.3 TO 100µM PER MILLION CYCLES
 - · AFTER 0.1-0.5 MILLION CYCLES WEAR IS REDUCED

Medley Clin Orthop 1996 Isaac Proc Inst Mech Eng H 2006

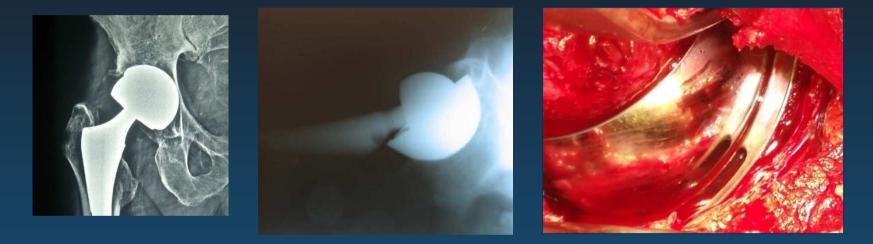
RUNNING-IN WEAR

- INITIAL RUNNING-IN WEAR DECREASES AS THE BEARING DIAMETER INCREASES AND/OR THE DIAMETRICAL CLEARANCE DECREASES
- SUBSEQUENT STEADY-STATE WEAR RATE IS MUCH LESS, RUNNING-IN WEAR CONTRIBUTES SIGNIFICANTLY TO THE TOTAL VOLUME OF METAL WEAR EVEN OVER VERY LONG PERIODS OF TIME

BLOOD AND SERUM ION LEVELS

- WELL FUNCTIONING ARTHROPLASTY
 - WHOLE BLOOD AND SERUM ION LEVELS DECREASE AFTER 6 MONTHS
 - THE CLINICAL RUNNING-IN PHASE
 - FEW PARTS PER BILLION
- PATIENT ACTIVITY DOES NOT INFLUENCE ION LEVELS OVER TIME

Heisel JBJS 2005 Bitsch JBJS 2007


METAL ON METAL

- · RETRIEVAL STUDIES
 - WEAR RATE SMALLER THAT OF PE
 - 25 TIMES LESS 4.2µm PER YEAR
 - THE LARGEST THE HEAD THE SMALLER THE WEAR (TWO TIMES)

Willert Clin Orthop 1998

METAL ON METAL

- SENSITIVE TO CUP MAL-POSITIONING
- SPECIFIC DESIGNS SHOW EXCESSIVE WEAR WHEN CUP IS LEFT OPEN

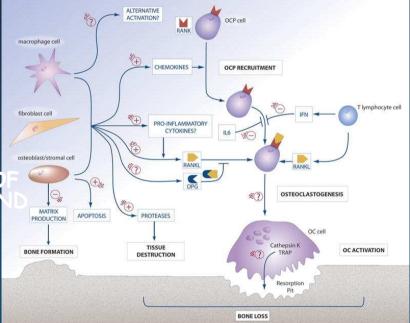
Grammatopoulos JBJS 2010

- · ALTR IN PROSTHESES MADE OF (COCR) ALLOYS
- METAL REACTIVITY
 - HIGH WEAR OF THE BEARING
 - PREDOMINANTLY FOREIGN-BODY INFLAMMATORY RESPONSE
 - LATERAL OPENING ANGLE >55 DEGREES
 - AND/OR EXCESSIVE COMBINED ANTEVERSION
 - · EDGE LOADING AND HIGH WEAR
 - RELATIVELY LARGE METAL PARTICLES
 - · CIRCULATING CO AND CR ION LEVELS GREATER THAN 10 PPB

Langton JBJS 2008 De Hann JBJS 2008 De Hann JBJS 2000 . ortho-uth.org

Svensson JBJS 1988

Hallab JBJS 2001


IMMUNE SYSTEM

HOST DEFENCE CELLS (LYMPHOCYTES)

- RECOGNITION OF PARTICLES
 - RELEASE OF LARGE QUANTITIES C PROINFLAMMATORY CYTOKINES AN FACTORS
 - TNF,
 - IL1a, IL1b, IL6
 - RANKL
 - PGE2

- HYPERSENSITIVITY

Looney Curr Opin Rheumatol 2006 Hallab J Orthop Res 2005 Ritchlin J Musculoskelet Neuronal Interact 2004

- METAL SENSITIVITY
 - PREDOMINANTLY LYMPHOCYTIC (IMMUNE) RESPONSE
 - OR ALVAL
 - · (ASEPTIC LYMPHOCYTE-DOMINATED VASCULITIS-ASSOCIATED LESION)
 - WITH OR WITHOUT EXCESSIVE METAL-METAL BEARING WEAR

Willert JBJS 2005 Jacobs JBJS 2006

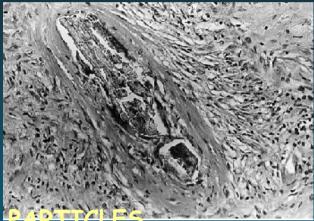
- EFFUSION OR A CYCTIC/SOLID MASS
- SO-CALLED PSEUDOTUMOR

Pandit JBJS 2008

 SUCH REACTIONS ARE NOT NEW OR UNIQUE TO METAL-METAL BEARINGS AND HAVE BEEN PREVIOUSLY REPORTED IN ASSOCIATION WITH COCR CORROSION

Svensson J Arthroplasty 2008

- A WIDE RANGE OF OCCURRENCE
 - FROM 1 IN 100 TO LESS THAN 1 IN 1,000
- VARIABLES ARE UNDER INVESTIGATION
 - PATIENT-RELATED FACTORS
 - GENDER, ETIOLOGY OF ARTHRITIS, BILATERAL IMPLANTS, GENETIC OR ENVIRONMENTAL SENSIT
 - SURGICAL TECHNIQUE
 - COMPONENT ORIENTATION AND FIXATION
 - IMPLANT FACTORS
 - BEARING DIAMETER, FORM AND FINISH



METAL ON METAL BEARING SURFACES

• SYSTEMIC EFFECTS

- LONG TERM EFFECTS
 - · ELEVATED SERUM METAL ION LEVELS
 - · PROTEIN BINDING
 - · REMOTE SITE DEPOSITION OF METAL PARTIC
 - LYMPHORETINACULAR SYSTEM DISSEMINATION
 - LIVER, SPLEEN, ABDOMINAL, PELVIC AND AXILLARY LYMPH NODES CHAINS
 - KIDNEY FUNCTION ???
 - PLACENTA CIRCULATION ???

Jacobs JBJS 2007

METAL PARTICLES LOCAL AND SYSTEMIC EFFECTS

- · CARCINOGENESIS
 - CO AND CR METAL PARTICLES INDUCE CARCINOMA IN ANIMAL MODELS

Freeman Ann Rheum Dis 1969 Heath Lancet 1971

- HUMAN TISSUES ???

METAL PARTICLES

· IMPLANT SITE TUMORS

- CLINICAL EVIDENCE ???
 - 19 CASES OF PERIPROSTHETIC TUMORS
 - MAJORITY MALIGNANT FIBROUS HISTIOCYTOMA

Jacobs JBJS 1992

· FOUR CASES OF SOFT TISSUE SARCOMA

Langhamer J Arthroplasty 1997

CARCINOGENESIS

• THERE IS LIMITED DATA ON PATIENTS

- WITH METAL-METAL BEARINGS FOR MORE THAN 20 YEARS

Tharani JBJS 2001

- THE RISK OF CANCER WAS SIGNIFICANTLY LOWER IN PATIENTS WITH A HIP RESURFACING COMPARED TO THE GENERAL POPULATION

Ostwestry report 2008

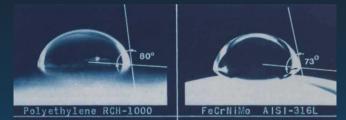
METAL PARTICLES

· REMOTE SITE MALIGNACIES

- EPIDEMIOLOGICAL STUDIES
 - · LYMPHOMA, LEUKEMIA
 - OLDER METAL ON METAL DESIGNS (BEFORE 1973)
 - SMALL NUMBER OF PATIENTS / LESS THAN 10 YEARS F-UP

Black The adult hip 1998

Gillespie Clin Orthop 1996

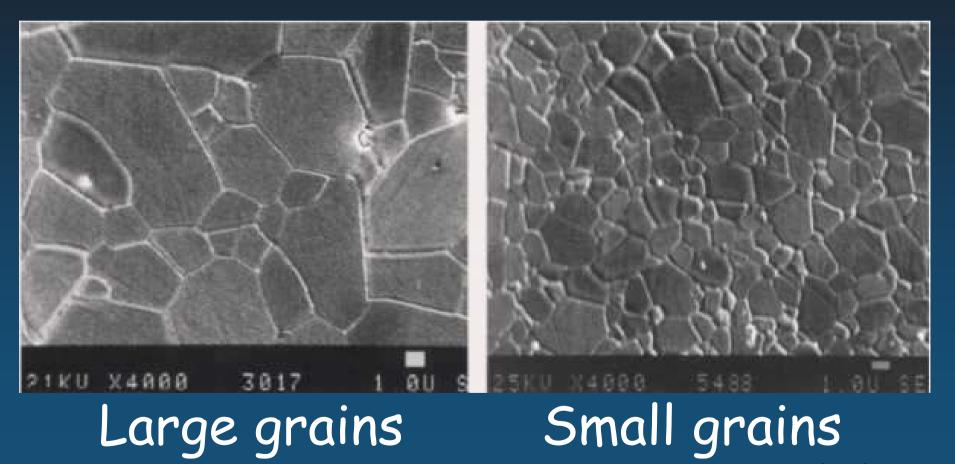

- · TUMOR DEVELOPMENT LATENT PERIOD IS MORE THAN 20 YEARS
 - LONGER F-UP STUDIES ARE NEEDED

Tharani JBJS 2001

- EXCELLENT WEAR CHARACTERISTICS
- BOTH IN THE LABORATORY AND CLINICAL SETTING
 Lee JBJS 2010

Petsatodis JBJS 2010

....A CERAMIC BEARING MAY NOT WEAR OUT IN THE PATIENT'S LIFETIME.....


- THE LOWEST IN VIVO WEAR RATES
- · SAME PRINCIPLES OF FRICTION AND LUBRICATION (MonM)
- · TWO MORE PROPERTIES
 - WETABILITY HYDROPHILIC-UNIFORMLY DISTRIBUTED SYNOVIAL FLUID
 - GREATER HARDNESS
- · CAN BE POLISHED TO A MUCH LOWER SURFACE ROUGHNESS
- A RATIO IS HIGHER REDUCED COEFFICIENT OF FRICTION
- TRUE FLUID-FILM LUBRICATION

Walter Clin Orthop 1992 Clarke Proc Inst Mech Eng 2000

- CERAMIC BEARINGS HAVE A LOW CO-EFFICIENT OF FRICTION DUE TO A COMBINATION OF THE SMALL GRAIN SIZE AND LOW SURFACE ROUGHNESS
- HARDNESS AND RESISTANCE TO SCRATCHING THIRD BODY PARTICLES

GRAIN SIZE

- · LOW REACTIVITY OF THE CERAMIC PARTICLES
 - LOWER RISK OF OSTEOLYSIS
- NO SYSTEMIC RELEASE OF CERAMIC DEBRIS THROUGHOUT THE BODY

Lerouge JBJS 1997 Catelas JBJS 1999 Hozack ICL 341 Technology 2011

CERAMIC PARTICLES

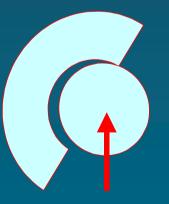
· RETRIEVAL STUDY

- DOUBLE SIZE RANGE OF CERAMIC WEAR DEBRIS
 - · NORMAL ARTICULATING CONDITIONS
 - SMALLEST 5-90nm (MEAN 24nm)
 - MICROSEPARATION CONDITIONS STRIP WEAR
 - LARGEST 50-3200nm (MEAN 430nm)

Kothari Clin Orthop 1996 Stewart J Arthroplasty 2003

MICROSEPARATION IN VIVO AND IN VITRO

- IN VIVO MICRO SEPARATION OF HEAD AND INSERT DURING THE SWING PHASE OF WALKING DETERMINED BY FLUOROSCOPY DENNIS AND KOMISTEK AAOS 1999, ESB 2000
- CONTACT OF THE HEAD ON THE RIM OF THE INSERT AT HEEL STRIKE REPRODUCES CLINICAL WEAR MECHANISMS.


NEVELOS AND FISHER ORS 2000, J ARTHROPLASTY

Swing phase.

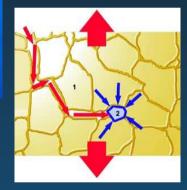
Heel strike. Stance phase.

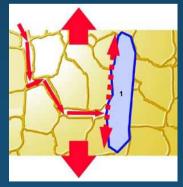
Re-location tho-uth.org

CERAMIC DISADVANTAGES

- · POTENTIAL DISADVANTAGES OF COC
 - COST
 - FRACTURE RISK
 - REDUCED INTRA-OPERATIVE FLEXIBILITY RELATED TO NECK LENGTH AND LINER
 - POTENTIAL FOR ACTIVITY RELATED NOISE

CERAMIC DISADVANTAGES


- · CERAMICS CAN FRACTURE
 - HARD TO DEFINE THE EXACT RISK
 - IMPROVED CERAMIC MATERIAL AND STRUCTURAL PROPERTIES
 - · DELTA CERAMICS
 - · QUALITY CONTROL
 - ESTIMATED RISK OF FRACTURE IS 0.014% (1 IN 7000)
 - · RAPID REVISION WHICH DOES NOT COMPROMISE RESULTS


Sharma J Arthroplasty 2010

MATERIAL PROPERTIES

- FIRST
 - ALUMINA 1970's
 - 99.5% HIGH PURITY AL2O3
- SECOND
 - · ZIRCONIA 1980's
 - 99.0% YTTRIA-STABILIZED TETRAGONAL ZRO2
- THIRD
 - BIOLOX FORTE
- FOURTH
 - · BIOLOX DELTA
 - · GRAIN SIZE REDUCTION TO ONE MICRON

- · MODERN ERA
 - BIOLOX FORTE
 - HIGH QUALITY
 - · DECREASED GRAIN SIZE
 - · DECREASED INCLUSIONS
 - · GRAIN BOUNDARIES
 - FAR GREATER BURST STRENGTH (COMPARED TO BEFORE 1995)
 - MATED IMPLANTS
 - · EXCELLENT FIXATION RECORDS
 - HIGH TAPER TOLERANCE
 - · NO RISK FOR CERAMIC IMPINGEMENT

www. ortho-uth.org

Hamilton CORR 2010

CERAMIC DISADVANDAGES

- NOISES ARE CREATED WITH ALL BEARINGS
 - CLICKING IS THE MOST COMMON SYMPTOM
- HARD BEARINGS-THE HIGHEST POTENTIAL
 - MOM BEARINGS CLICK AND SQUEAK
 - · 3.9% SQUEAKING
 - · EARLY AND TRANSIENT
 - · SELF POLISHING

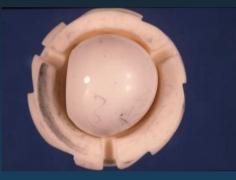
Back JBJS 2005

AETIOLOGY

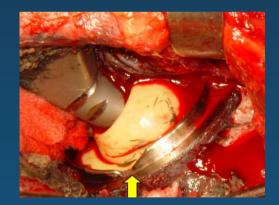
- · CAUSE OF COC SQUEAK
 - EDGE LOADING OF THE CERAMIC HEAD ON THE CERAMIC LINER
 - IMPINGEMENT COMPONENT PLACEMENT
 - BONE AND SOFT TISSUE IMPINGEMENT
 - SEPARATION OF THE FEMORAL HEAD FROM THE LINER
 - LOCALIZED FLUID-FILM BREAK DOWN
 - INCREASED WEAR AND FRICTION OF THE CERAMIC HEAD (A WEAR SCAR OR STRIPE)
 - VIBRATION SQUEAKING

Walters JBJS 2008 Restrepo JOA 2008

AETIOLOGY


- · PATIENT CHARACTERISTICS
 - YOUNGER, TALLER, HEAVIER AND MORE FLEXIBLE PATIENTS
- · MAYO CLINIC
 - TITANIUM DEPOSITION WITHIN THE BEARING SURFACE
- TITANIUM DEBRIS NOT LOCATED IN THE AREA OF STRIPE WEAR

Hozack ICL 341 Technology 2011 Chevillotte Clin Orthop 2010


IMPLANT SPECIFIC ISSUE

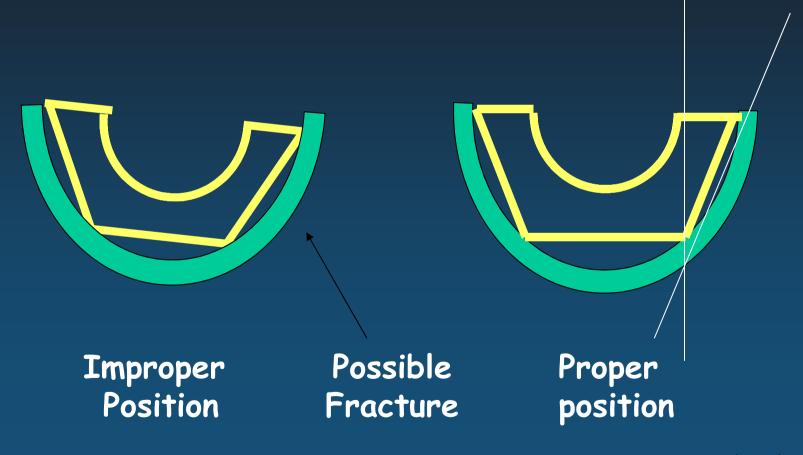
- · FEMORAL IMPLANT SPECIFIC PROBLEM
 - TMZF FEMORAL COMPONENT WITH A V-40 NECK DIAMETER (8.6%)
 - TAV FEMORAL COMPONENT WITH A C-TAPER NECK DIAMETER (0.7%)
- · CUPS WITH ELEVATED RIM CERAMIC INSERT

Restrepo JBJS 2010

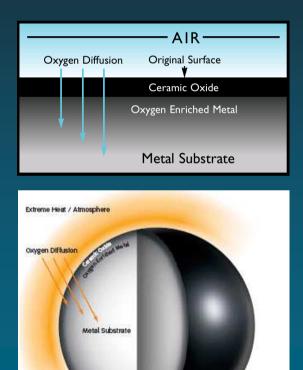
- · PROPER IMPLANT PLACEMENT
 - RISK OF NECK/SOCKET IMPINGEMENT
 - LATERAL OPENING OF LESS THAN 30°
 - · LATERAL OPENING GREATER THAN 55°
 - HIGH NECK/SHAFT ANGLE (>140°)
 - HIGH WEAR RATE

- AVOID LINER/HEAD CHIPPING DURING INSERTION

CERAMIC CUP DESIGN



Extended lip


Preferred Design

CERAMIC LINER ASSEMBLY

WHAT IS OXINIUM? -METAL IN WHICH THE SURFACE HAS BEEN TRANSFORMED INTO CERAMIC

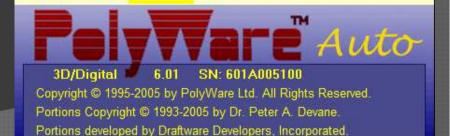
STARTS WITH A METAL ALLOY OF 2 OF THE 4 MOST BIOCOMPATIBLE ELEMENTS.

CLINICAL PRACTICE IN VIVO WEAR STUDY

- · PROSPECTIVE THA TRIAL
- POLYWARE STUDY (2003 INWARDS)
 - CERAMIC ON PE 48 HIPS
 - CERAMIC ON XLPE 50 HIPS
 - OXINIUM (28mm) ON XLPE 50 HIPS
 - OXINIUM (32mm) ON XLPE 46 HIPS
 - CERAMIC ON CERAMIC 50 HIPS
 - UP TO 12-15 YEARS FOLLOW-UP
 - BRIEF PRELIMINARY REPORT

Harris Clin Orthop 2005 Bragdon Trans AAHKS 2002 Karrholm Clin Orthop 1997 www.ortho-uth.org

MATERIAL & METHODS



- · 1/2003 5/2007: 221 PTS, 244 THA
- · ONE SURGEON
- **♀:159**, **♂:85**
- STEM: SYNERGY
- CUP: REFLECTION INTERFIT
- HEAD: 28, 32 MM (SMITH&NEPHEW)
- · GROUPS MATCHED FOR AGE SEX AND BMI
- TWO FAILURES

MATERIAL & METHODS

- Standard A-P & true lateral pelvis radiographs
 - 3 weeks, 6 weeks, 3 months, 6 months, 1 year and every year thereafter time intervals.
- Digitization by scanner
- Orbital Computer processed by PolyWare[™] Auto
 Orbital, ver. 6.01 (Devane, Clin Orthop Relat Res,
 1995 & Draftware Developers Inc.)

3D VOLUMETRIC WEAR

- BOTH OXINIUM FEMORAL HEADS PERFORMED WELL (SS DIF P= 0.03)
- INITIAL 2 YEARS BEDDING IN THEN STABLE
- CERAMIC ON XL-PE ???
- · CERAMIC ON PE COMPARABLE TO HISTORICAL CONTROLS

COST-EFFECTIVENESS

- NO COST EFFECTIVENESS DATA
- THE DIFFERENTIAL IN COST FOR COC FROM THE OTHER BEARINGS IS NEGLIGIBLE
 - XLP OR MOM
- RESURFACING HIP IS MORE COSTLY

TAKE HOME MESSAGE

- AT LEAST FOR THE FEMORAL STEM
- BOTH CEMENTLESS AND CEMENTED
 FIXATION PRINCIPLE
 - 1.5-2.5% ASEPTIC LOOSENING AT 15 TO 20 YRS
- · GOOD AND BAD RECIPES
- CAN WE DO BETTER ???
- THE COST OF SUCH AN EXCERSISE ????
- THE ROLE OF BEARING SURFACES

TAKE HOME MESSAGES

- SATISFACTORY BEARING SURFACES FOR THE YOUNG AND ACTIVE PATIENT
- · DEMANDING SURGICAL TECHNIQUE
- LONG TERM CLINICAL DATA IS LACKING
 THE UNIQUE CASE OF COC
- NEW BIOLOGICAL EFFECTS ???
- COST EFFECTIVENESS ????