

Metals and Alloys for Implants & Medical Devices

1

Prof. Moataz M. Attallah

Director, Advanced Materials & Processing Lab (AMPLab)

Interdisciplinary Research Centre, School of Metallurgy & Materials

© AMPLab 2017

Outline

Introduction: Metallic biomaterials

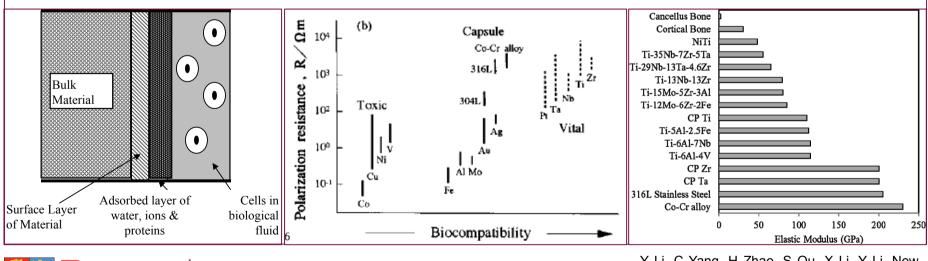
Material types:

- α + β and β -Ti alloys
- NiTi (nitinol)
- CoCr alloys
- Stainless steels
- Other metals: gold, tantalum, etc...

□ **Processing:**

- Investment casting
- Forging
- Machining
- Advanced processing: metal 3D Printing

Conclusions

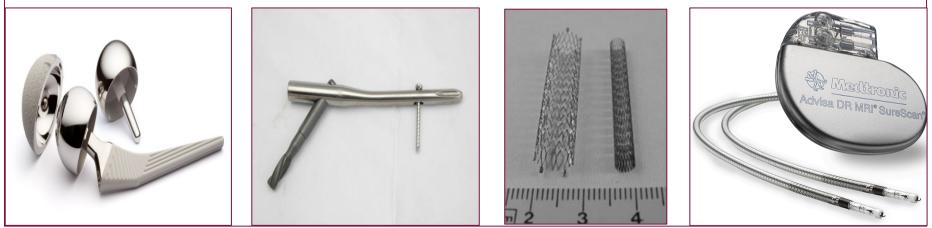


© AMPLab 2017

Metallic Biomaterials Introduction

- □ For a metal to be used as a **biomaterial**, it needs to be
 - Bioinert/Biotolerant: having minimal interaction with the surrounding body fluids, soft/hard tissues.
 - Mechanically biocompatible: especially for orthopaedic implants, having a similar modulus to the hard tissues.
 - Strong: expressed in the form of mechanical strength, fatigue resistance (if cyclic loading is required), wear, etc...

© AMPLab 2017


nterdisciplinary

esearch

Y Li, C Yang, H Zhao, S Qu, X Li, Y Li. New Developments of Ti-Based Alloys for Biomedical Applications. Materials 2014, 7, 1709-1800.

Metallic Biomaterials Introduction: Definitions

- □ **Prosthesis:** to replace a portion of the body (e.g. joints).
- Fixation devices: to stabilise broken bones during heeling or permanently (e.g. plates, screws, spinal devices, wires).
- □ Vascular & urological systems devices: stents
- □ **Functional devices:** pacemakers or cochlear implants.
- Requirements: no irritation to tissues, an excessive inflammatory response, allergic and immunologic reactions, and cancer.

© AMPLab 2017

Metallic Biomaterials Introduction*

5

UNIVERSITY OF

BIRMINGHAM

© AMPLab 2017

nterdisciplinary

R esearch Centre

*J Park and RS Lakes. Biomaterials. 3rd Ed., Springer, 2007

Metallic Biomaterials Typical Materials & Applications of Metallic Implants

Typical devices/annual use:

Device	Annual # of Devices in USA
**Heart Valves (rings, cages)	100,000 (some)
**Pacemakers	400,000
*Coronary Stents	1,500,000
*Hip Prostheses (2002)	250,000
*Knee Prostheses (2002)	250,000
*Dental Implants	910,000

Ratner *et al.* "Biomaterials Science: An Introduction to Materials in Medicine, 2nd Edition, Elsevier Academic Press, San Diego, CA, 2004.

*all or predominantly metal **metal-containing

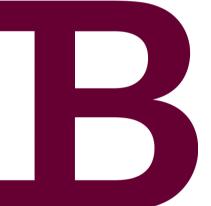
Total completed ops	137,784
Hip procedures	65,062
Knee procedures	66,585
Ankle procedures	585
Elbow procedures	614
Shoulder procedures	4,938
NJR consent rate	93%
Independent	2015
Total completed ops	70,810
Hip procedures	32,291
Knee procedures	37,211
Ankle procedures	135
Elbow procedures	36
Shoulder procedures	1,137
NJR consent rate	95%

NHS

UK National Joint Registry, Statistics 2015.

Typical metallic systems/classification:

Metal type	Example	Characteristics					
Bio-tolerant Au, CoCr, Zr, Nb, Ta, Stainless steels		Creates thin fibrous tissue interface as a capsule.					
Bio-inert	Ti and Ti-alloys,	Minimal interaction, leading to contact osteogenesis.					


© AMPLab 2017

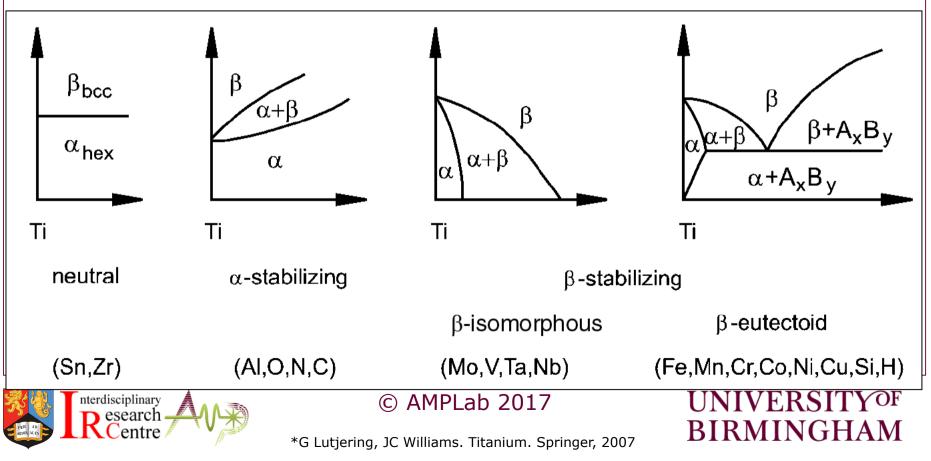
2015

© AMPLab 2017

Titanium & Its Alloys Physics Metallurgy*

- Compared to Fe & Ni, Ti has the highest melting point, corrosion resistance, oxygen reactivity, & price.
- **\Box** Commercial Ti-alloys contain two phases: α (HCP) & β (BCC).
- \square On heating to above the β -transus, only the β -phase exists.
- Alloying, as well as thermal & thermo-mechanical treatments can create alloys with tailored the mechanical properties.
- Components can be cast, forged, rolled, or machined.

Room Temperature E (GPa)115215200Yield Stress Level (MPa)100010001000Density (g/cm ³)4.57.98.9						°C (°F)	Liquid	a series of the series of		
		Ti	Fe	Ni	α -Ti (10 (10)	1670_ (3038)	10 No. 10			
Comparative Reactivity with Oxygen Very High Low Low Comparative Price of Metal Very High Low High	Allotropic Transformation (°C) Crystal Structure Room Temperature E (GPa) Yield Stress Level (MPa) Density (g/cm ³) Comparative Corrosion Resistance Comparative Reactivity with Oxygen	$\beta \xrightarrow{882} \alpha$ bcc \rightarrow hex 115 1000 4.5 Very High Very High	$\begin{array}{c} \gamma \xrightarrow{912} \alpha \\ \text{fcc} \rightarrow \text{bcc} \\ 215 \\ 1000 \\ 7.9 \\ \text{Low} \\ \text{Low} \end{array}$	- fcc 200 1000 8.9 Medium Low	4.68Å	(1625)	ß Beta Phase		(110)	1


© AMPLab 2017

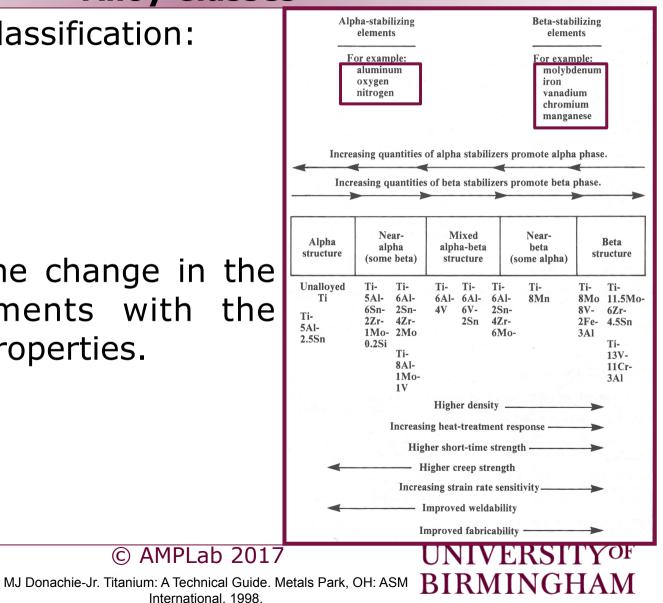
UNIVERSITY^{OF} BIRMINGHAM

*G Lutjering, JC Williams. Titanium. Springer, 2007

Titanium & Its Alloys Physics Metallurgy*

- Certain alloying elements (e.g. Mo, V, Nb) stabilise the β phase at low temperatures, while others (e.g. Al, Sn, Zr) stabilise α.
- Other elements have a neutral effect or cause the formation of intermetallics.

Titanium & Its Alloys Alloy Classes^{*}



- CP + α
- near α
- $\alpha + \beta$
- near β

nterdisciplinary n esearch

Centre

- β.
- □ Correlating the change in the alloying elements with the variation in properties.

10

Titanium & Its Alloys

Key Characteristics Versus Other Implant Materials*

- Titanium outshines other metals in its corrosion resistance, specific properties (e.g. strength-to-weight), and low modulus.
- □ **Limitations:** cost and oxygen reactivity (during_processing).

Material	Tissue tolerance	Corrosion resistance		Fatigue strength (MPa)	Elastic modulus (GPa)	Toughness	Wear resistance	Specific gravity	Relativ total cost ^c
Stainless steels									
316 (annealed)	10	7	517	350	200	8	8	8.0	1.0
317 (annealed)	9	7	630	415	200	10	8.5	8.0	1.1
321 (annealed)	9	7	610	410	200	10	8	7.9	1.1
347 (annealed)	9	7	650	430	200	10	8.4	8.0	1.2
Co-Cr alloys			El segues	NEED N		Electron and			1.17
Cast alloy a	10	9	655	425	238	2	10	8.3	3.7
Wrought alloy b	10	9	896	600	242	10	10	9.13	4.0
Titanium alloys			A days	0.20020					
Unalloyed Ti	8	10	550	315	110	7	8	4.5	1.7
Ti-6A1-4V	8	10	985	490	124	7	8.3	4.43	1.9
Composites (fabric rel	inforced)		The second			and the second			
Epoxy-70% glass	7	7	680	200	22	3	7	2.1	3
Epoxy-63% carbon	7	7	560	170	56	3	7.5	1.61	10
Epoxy-62% aramid	7	7	430	130	29	5	7.5	1.38	5

'Total cost includes cost of material per unit volume, processing cost, and finishing cost.

Research Centre

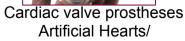
© AMPLab 2017


*M Farag. Materials Selections for Engineering Applications. Prentice Hall, 1997.

Titanium & Its Alloys Typical Applications

Materia	I	Knee replac	ement							
Hip stem Femoral Cup/ Metal Femoral Tibia (uncemented) head insert back component plate shell										
CP Ti Ti alloys	- - X	-	_	X X	x	x				
	CP Ti: commercially pure titanium; X: clinically used. –: clinically not used or not successful;etal bearing;									

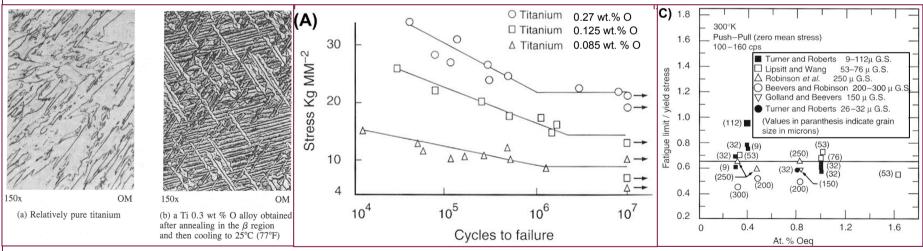
C Yao TJ Webster. Titanium and CoCr alloys for hips and knees. Woodhead Publishing, 2011.



Hip stem*

Plates/fixtures

CP Ti bone plate implant*



© AMPLab 2017 *G Lutjering, JC Williams. Titanium. Springer, 2007

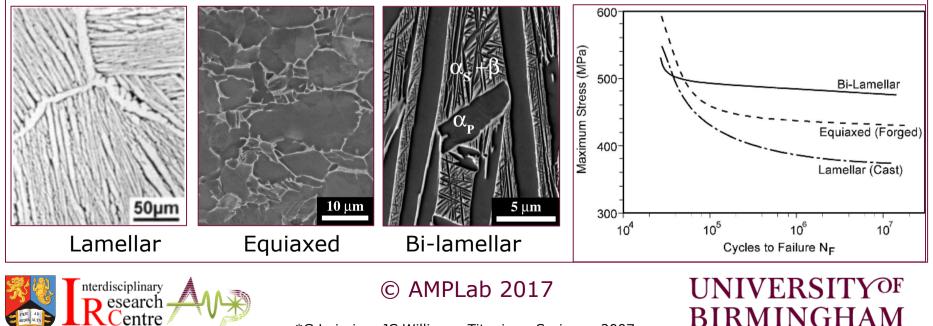
Titanium & Its Alloys

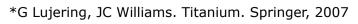
Alloy Classes Used as Biometals: CP/ α -Titanium

- □ Unalloyed Ti, limited amounts of Fe, and interstitial elements (O,N).
 - Highly corrosion resistant (bio-inert, bio-compatible).
 - Relatively good fabricability.
 - Relatively low mech. properties (170-480 MPa).
 - O-content affects the microstructure & properties; higher strength with O-content increase.

MJ Donachie-Jr. Titanium: A Technical Guide. Metals Park, OH: ASM International, 1998. JB Brunsk. Chapter I.2.3 Metals: Basic Principles. In Biomaterials Science: Introduction to Materials in Medicine. BD Ratner, AS Hoffman, JF Schoen, JE Lemons (Ed.s), Elsevier, 3rd Ed., 2013.

© AMPLab 2017

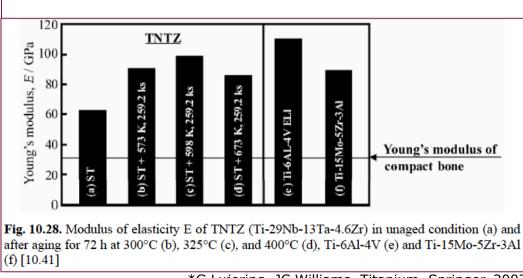

Titanium & Its Alloys


14

Alloy Classes Used as Biometals: $\alpha+\beta$ -Titanium

- □ Ti-6Al-4V, the most common Ti alloy, or Ti-6Al-7Nb (reduced toxicity from V & AI) using non-toxic elements (e.g. Zr, Ta, Nb).
- □ Good balance of all mechanical properties, yet dependent on the microstructure (outcome of the processing route and thermomechanical history).
- Castings have coarse grains and lamellar microstructure.
- Most common application: hip stem, bone plates. П

Centre



Titanium & Its Alloys Alloy Classes Used as Biometals: β-Titanium

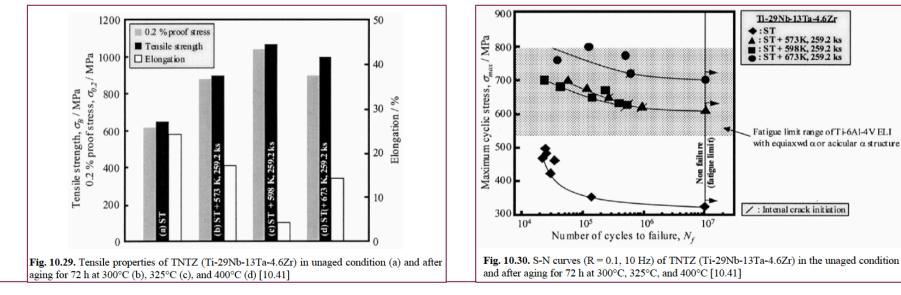
A growing new generation of β-Ti-alloys, using biocompatible alloying elements (Nb, Ta, Zr, Mo), with the following key characteristics:

- lower modulus of elasticity (60-85 GPa), compared to α + β alloys.
- Investment castings of heavily stabilised β -alloys have nearly identical properties compared to β -annealed wrought products.
- Examples: The Japanese alloys Ti-29Nb-13Ta-4.6Zr (TNTZ) and Ti-29Nb-13Ta-4Mo, Ti-12Mo-6Zr-2Fe (TMZF), modified Beta 21S alloy (Beta 21SRx).

nterdisciplinary

esearch

*G Lujering, JC Williams. Titanium. Springer, 2007 C AMPLab 2017



M Niinomi. Shape memory, super elastic and low Young's modulus alloys. In: L Ambrosio and E Tanner (eds). Biomaterials for spinal surgery. Woodhead Publishing, PA, 2012.

tibiae of rabbits (Niinomi and Hattori, 2010).

Titanium & Its Alloys Alloy Classes Used as Biometals: β-Titanium

- □ The modulus and strength can be controlled by increasing the ageing (α -phase precipitation)
- The unaged condition has low modulus (60 GPa), but shows low fatigue and yield strengths.

© AMPLab 2017

© AMPLab 2017

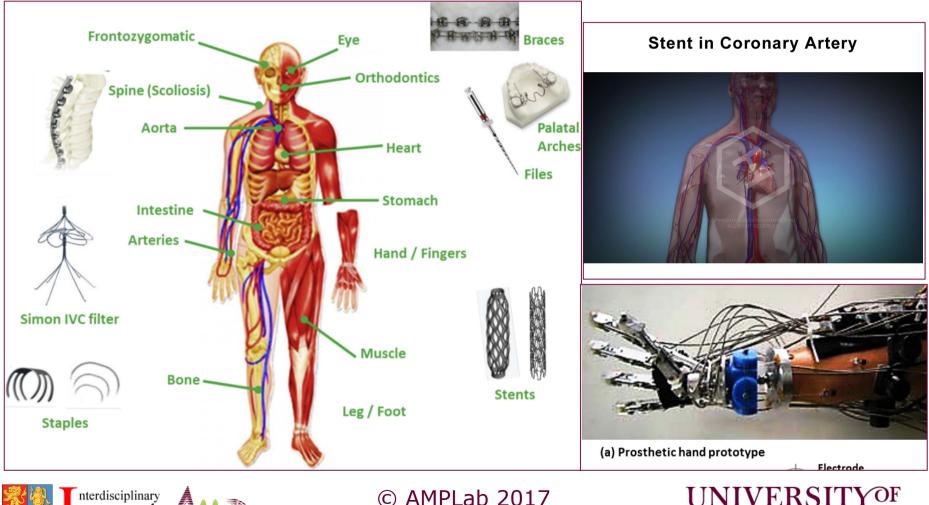
NiTi-based Alloys Different Types of Performance

Superelasticity (SE)

- Reversible deformation
- Strain-induced martensitic transformation
- 20% recoverable strain

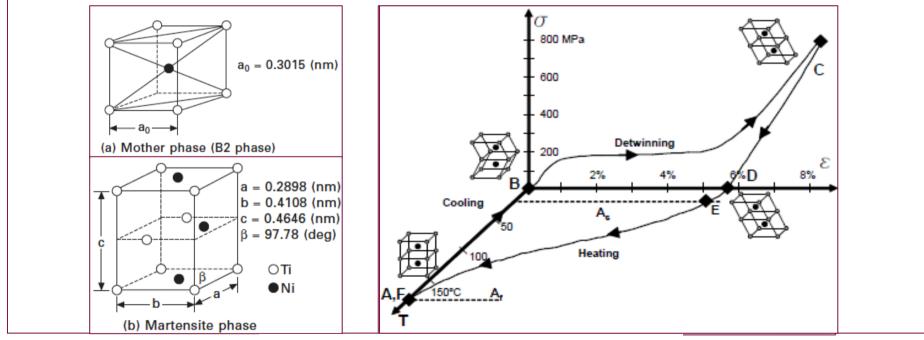
Shape Memory Effect (SME)

- 1-Way SME: Deform in low temperature in the martensitic field, recovers initial shape upon heating to the austenitic field.
- 2-Way SME: Change between a low temperature shape and a high temperature shape according temperature after training.



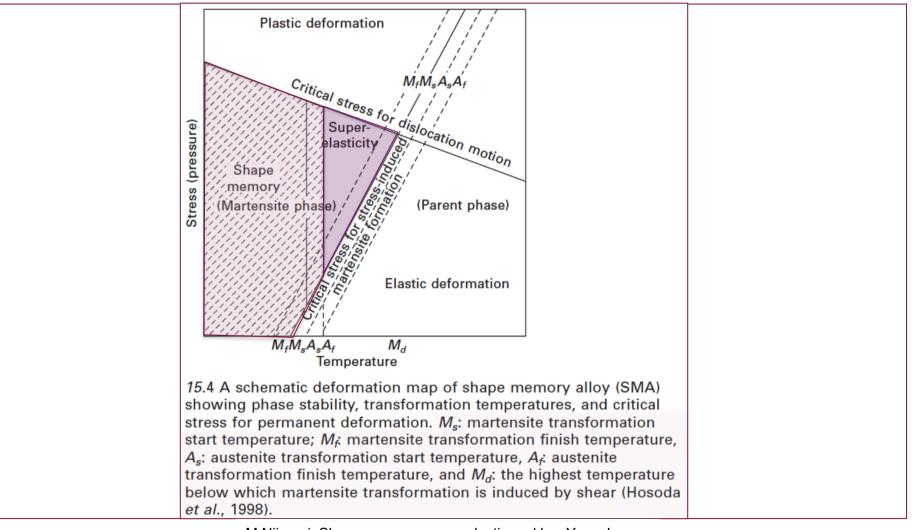
 $\ensuremath{\mathbb{C}}$ AMPLab 2017

NiTi-based Alloys Key Applications



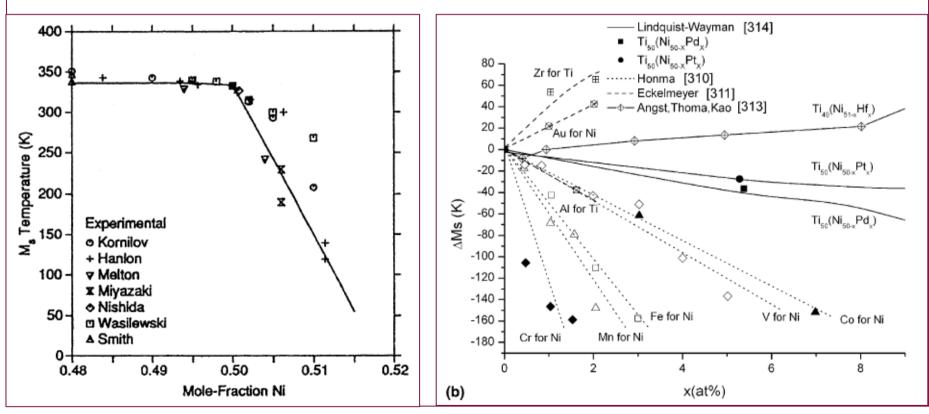
UNIVERSITY OF **BIRMINGHAM**

NiTi-based Alloys Phase Transformation Mechanisms


- □ **Key allotropes:** martensite (B2) and austenite (B19').
- SME: deformed martensite transforms into austenite upon heating, returning to parent shape upon cooling.
- SE: austenite transforms into martensite upon loading, then reverts to austenite on the removal of the load.

M Niinomi. Shape memory, super elastic and low Young's modulus alloys. In: L Ambrosio and E Tanner (eds). Biomaterials for spinal surgery. Woodhead Publishing, PA, 2012.

NiTi-based Alloys Phase Transformation Mechanisms



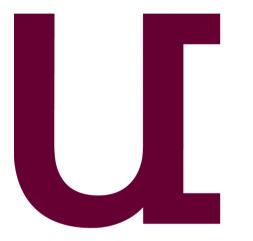
M Niinomi. Shape memory, super elastic and low Young's modulus alloys. In: L Ambrosio and E Tanner (eds). Biomaterials for spinal surgery. Woodhead Publishing, PA, 2012.

NiTi-based Alloys Influence of Chemistry

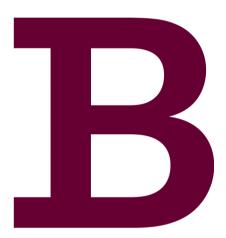
Transformation temperatures are affected by alloy chemistry.
SE NiTi is austenitic at room temperature.

K Otsuka, X Ren. Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in Materials Science 50, 511–678, 2005.

NiTi-based Alloys Biocompatibility of NiTi Alloys


- □ Ni-sensitisation (allergy) has increased in the last 30 years.
- Increasing the Ti-content reduces Ni-ion release; equiatomic NiTi is safe, but Ni leakage can cause damage to patients.
- Excellent mechanical biocompatibility & properties.

		NiTi
	Austenitic	Martensitic
Ultimate tensile strength (MPa)	800-1500	103-1100
Tensile yield strength (MPa)	100-800	50-300
Modulus of elasticity (GPa)	70-110	21-69
Elongation at failure (%)	1-20	up to 60



M Niinomi. Shape memory, super elastic and low Young's modulus alloys. In: L Ambrosio and E Tanner (eds). Biomaterials for spinal surgery. Woodhead Publishing, PA, 2012.

CoCr

© AMPLab 2017

CoCr Typical Applications

- □ More widely used in hip & knee replacements than SS and Ti.
- □ Highest wear resistance among metallic implant materials (M). Better corrosion resistance to SS.
- Used in the manufacture of stents and dental implants due to its excellent biocompatibility with blood and soft tissues.
- Processing: casting and hot deformation (forging or wire drawing); cast products are used in dentistry and artificial joints, while wrought products are used for heavily loaded joints (e.g. femoral hip stems).

Material		Hip repla	cement		I	Knee re	placemer	nt	E C 104	(b)	Capsule	;
	Hip stem (uncemented)	Femoral head	Cup/ insert	Metal back shell	Femoral component	Tibial plate	Tibial cushion	Patella	tance, R	Toxic	Co-Cr alloy 316L	Ti ^{Zr} Nb
CP Ti	-	_	_	х	-	-	-	-	resistanc		Ag	Vital
Fi alloys	х	-	-	х	X	х	-	-	- 10 ⁰	- -	Au	
CoCr	X	х	X(M)	х	х	х	_	_	.io	Ni	11	
alloys									Lo. 24	Cu	Al Mo	
Stainless steel	s –	х	-	-	-	-	-	-	Polarization	- Co	Fe	

© AMPLab 2017

C Yao TJ Webster. Titanium and CoCr alloys for hips and knees. Woodhead Publishing, 2011.

CoCr Alloy Design

- Co-base, with Cr (forming solid solution with Co, enhanced strength and corrosion resistance), plus Mo to produce fine grains which results in higher strength. Generally, a complex alloy system, with C, Mo, Ni, W, Fe.
- Elastic modulus varies from 185 to 250 GPa (~equal to SS 316 and 2X Ti)
- □ Introduced in the 1930s (vitallium: 30% Cr, 7% W, 0.5% C, Co-base)
 - Mostly for metallic dental castings
 - To replace the more expensive gold alloys
 - Larger partial denture castings
- ASTM recommends CoCr alloys for implants
- 1. cast CoCrMo alloy (F75)
- 2. wrought CoCrWNi alloy (F90)
- 3. wrought CoNiCrMo alloy (F562)
- 4. wrought CoNiCrMoWFe alloy (F563)

TABLE 1.3	Chemical Com	positions of CoCr	Alloys [American Soc	iety for Testing and
Materials, F	75–87, p.42; F90	–87, p.47; F562–84	, p.150, 1992]	
	CaCaMa (E75)	C - C-WAL (E00)	CaNECaMa (EEC)	C-NC-M-WE- (EE(2)

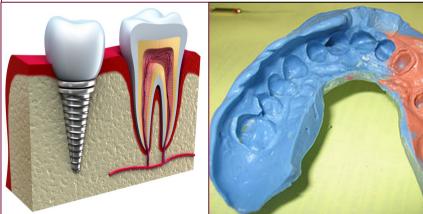
	CoCrM	lo (F75)	CoCrWN	li (F90)	CoNiCrMo (F562)		CoNiCrMo	WFe (F563)
Element	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Cr	27.0	30.0	19.0	21.0	19.0	21.0	18.00	22.00
Mo	5.0	7.0	_	_	9.0	10.5	3.00	4.00
Ni	_	2.5	9.0	11.0	33.0	37.0	15.00	25.00
Fe	_	0.75	_	3.0	_	1.0	4.00	6.00
С	_	0.35	0.05	0.15	_	0.025	_	0.05
Si	_	1.00	_	1.00	_	0.15	_	0.50
Mn	_	1.00	_	2.00	_	0.15	_	1.00
W	_	_	14.0	16.0	_	_	3.00	4.00
Р	_	_	_	_	_	0.015	_	_
S	_	_	_	_	_	0.010	_	0.010
Ti	_	_	_	_	_	1.0	0.50	3.50
Со			Balance					

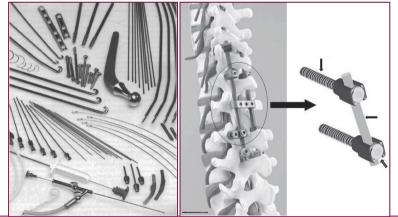
© AMPLab 2017

JA Helsen, Y Missirilis. Biomaterials. Springer, 2010 $\,$

CoCr

Processing-Properties Relationships


Cast CoCr:


- Flexible process for customisation (e.g. dental implants)
- Lower strength due to the slow cooling in casting (coarser grains).
- Carbide precipitation, reducing the ductility.
- A good balance of strength and toughness.

Forged CoCr:

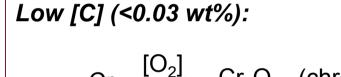
nterdisciplinary

- More uniform microstructure
- Superior fatigue and strength, making it suitable heavily loaded joints (e.g. femoral hip stems).
- Expensive sophisticated press and tooling.

UNIVERSITY^{OF}

© AMPLab 2017

*J Park and RS Lakes. Biomaterials. 3rd Ed., Springer, 2007 ${f BIRMINGHAM}$



© AMPLab 2017

Stainless Steels Chemistry

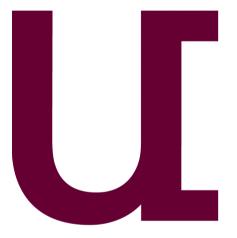
- \square A corrosion resistant steel alloy, with \sim 11 wt. % Cr.
- Common alloy: 316L (ASTM F138/139): 60-65 wt. % Fe, 17-20 wt. % Cr, 12-14 wt. % Ni, 2 wt. % Mn, 2 wt. % Mo, max 0.03 wt. % C (L), plus minor amounts of Si, P.
- □ Non-magnetic, FCC (austenitic) structure.

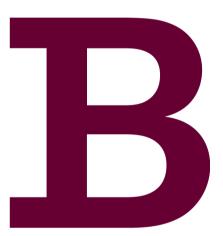
Cr $[O_2]$ Cr_2O_3 (chromium oxide at surface = protective water-barrier)

Higher [C] (> 0.03 wt%):

 $Cr + C \xrightarrow{[O_2]} Cr_{23}C_6$ (chromium carbides) $\xrightarrow{\text{which}}$ ppt @ grain boundaries water penetration $\leftarrow \downarrow Cr_2O_3$ @ surface \leftarrow Depletes Cr at adjacent grain boundaries

Stainless Steels Causes of Failure


- Deficiency of Mo (enhances corrosion resistance)
- □ Use of sensitised steel (high C)
- Topography and metallurgical finish
- Improper implant and implant material selection, misfit between the anatomical restrictions and implant geometry.
- 316L stainless steels may still corrode inside the body (stersscorrosion, contact/wear). Ideally, stainless steels are suitable for use only in *Temporary* implant devices such as fracture plates, screws, and hip nails.
- Surface modification methods are widely used in order to improve corrosion resistance, wear resistance, and fatigue strength of 316L SS
 - anodization, passivation
 - glow-discharge nitrogen implantation


© AMPLab 2017

Other Systems

© AMPLab 2017

Dental Amalgams Other Systems

- Dental filling material for treatment of cavities due to decay.
- Composition: elemental Hg (43-54 %), and an alloy powder composed of mainly Ag, Cu, Sn, and Zn.
- Hg (liquid) acts as a binder, creating a workable paste and a strong solid filling, giving it the unique silver grey colour.
- Elemental mercury can be toxic. Health risks associated with amalgam led to the development of new filling material.

BIRMINGHAM

Gold, PGM, and Tantalum Other Systems

- □ Key characteristics: corrosion resistance and compatibility.
- □ **Typical alloys:** Ag+ noble metals (Pt) + Cu + Zn.
- □ Applications: dental implants (crowns, inlays, bridgework).
- Pt-group metals (Pt, Pd, Rh, Ir, Ru, Os) high corrosion resistance, electrical conducitivity, but poor mech. properties.
- Electrode for pacemakers, stimulating onset of cardiac beats.
- □ **Tantalum**: limited applications due to cost, high T_m, poor mechanical properties, and high density.
 - Used for porous structures in bone implants.

Property	Type I	Type II	Type III	Type IV						
Au content (%)	81–83	76–78	73–77	71–74						
Pt content (%)	-	-	-	0–1						
Pd content (%) 0.2-4.5 1-3 2-4 2-5										
Characteristic Soft Medium Hard Very hard										
Application Occlusal inlays Intracoronal inlays Onlays, crowns, bridgework Removable partial										
[i] ^a Table adapted from										

© AMPLab 2017 Johnson-Matthey

© AMPLab 2017

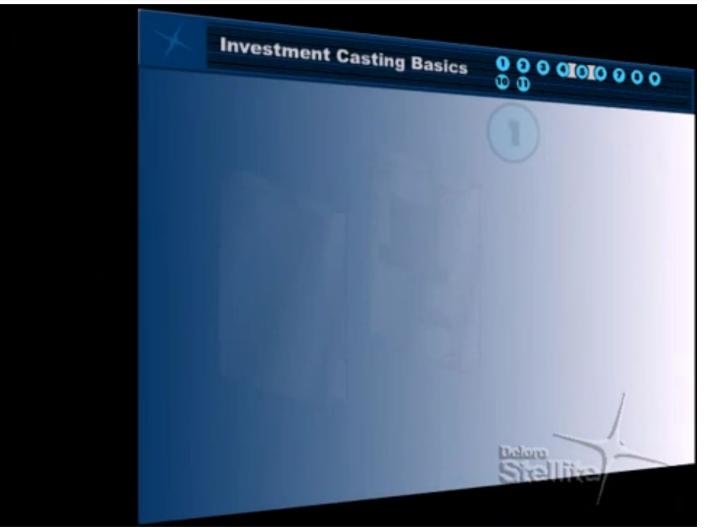
Manufacturing Methods Investment Casting

- □ Ideal method for Ti and CoCr orthopedic implants.
- Aluminium dies are used to create the wax shapes. Al-dies are cheap to manufacture and suitable for low melting point waxes.
- □ Assembly into a tree, ready for investment.

© AMPLab 2017 WD Griffiths, University of Birmingham.

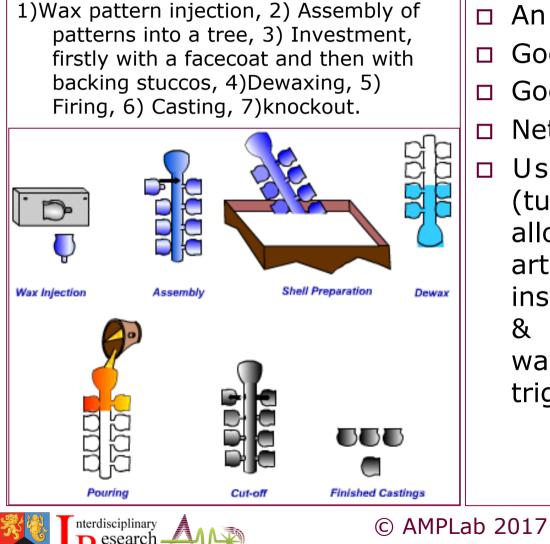
Manufacturing Methods Investment Casting

- □ The tree is coated with a face-coat + stucco, and dried to a green state. The wax is removed by melting it out at 120°C.
- Firing the shells produces sintering of the stucco and a hard, rigid shell, capable of receiving very high temperature liquid metal.
- After taking up to 24 hours to make a shell the liquid metal is poured in.

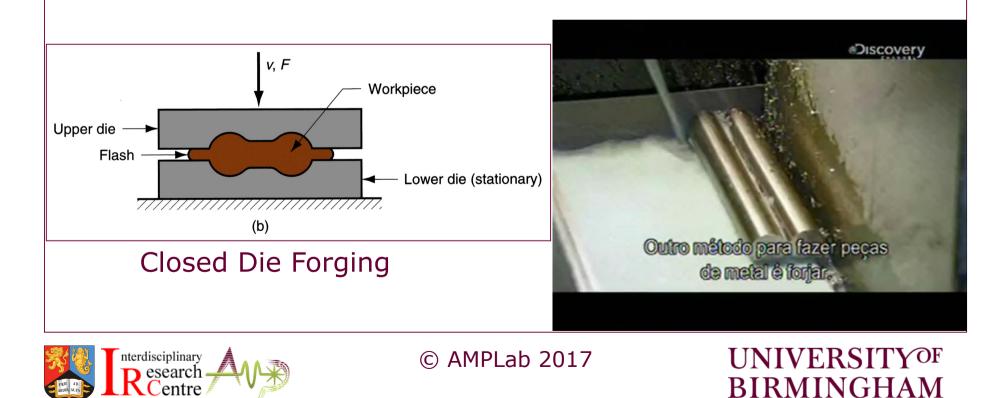


WD Griffiths, University of Birmingham.

© AMPLab 2017


Manufacturing Methods Investment Casting

Manufacturing Methods Investment Casting


- □ An expensive process.
- □ Good surface finish.
- □ Good dimensional tolerance.
- Net-shape capability.
- Used for Ni-base alloys (turbine blades, and Co-base alloys (medical applications), artefacts, jewellery & surgical instrument, presently vanes & blades for gas turbines, wave guider for radar and triggers for fire arms.

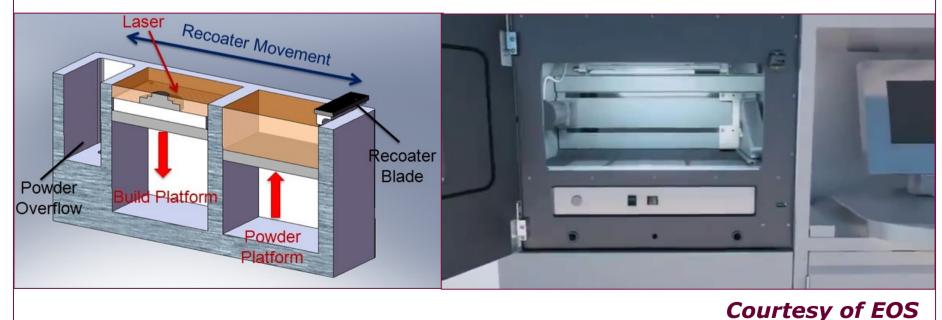
UNIVERSITY^{OF}

BIRMINGHAM

Manufacturing Methods Forging

- Forming a heated material by applying pressure with or w/out a shaped die (open die vs. cold die forging).
 Forging used for high strength fatigue-loaded
- components: e.g. hip stem.

Manufacturing Methods Machining



© AMPLab 2017

Manufacturing Methods Selective Laser Melting

- Process: Laser Powder Bed Fusion, Selective Laser Melting (SLM), metal 3D printing, or Additive Manufacture (AM).
- Definition: A process where thin layers of powders (~20-50 μm) are selectively melted and fused sequentially (usually on a substrate) to build 3D components from a CAD model.

© AMPLab 2017

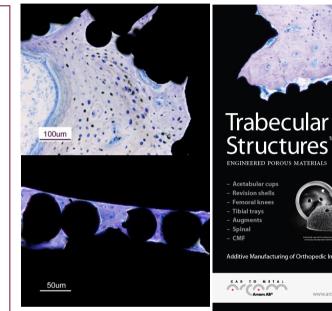
Manufacturing Methods Selective Laser Melting

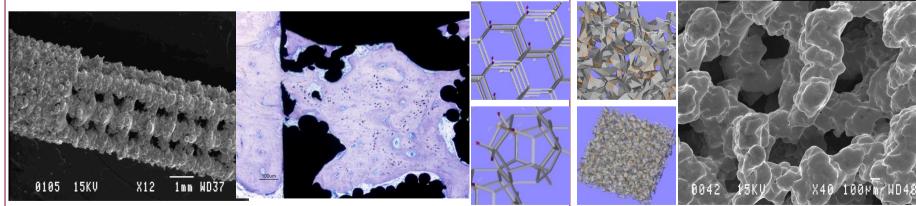
© AMPLab 2017

Xilloc

Manufacturing Methods Electron Beam Selective Melting (ARCAM)

- **Process:** Selective melting using an electron beam source.
- Description: Similar to SLM, layers of powder are melted in a heated bed (~600-1000°C).
- Advantages: rapid, high throughput, resource efficient technology, multi-disciplinary technology.



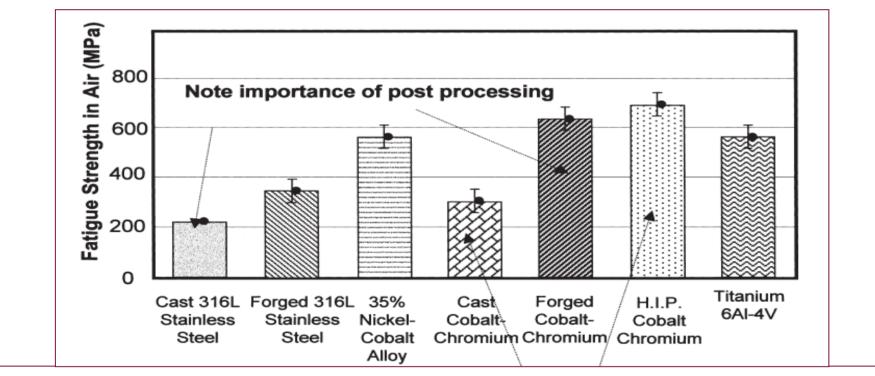

© AMPLab 2017

Trabecular Structures[™] Created by EBSM (ARCAM) Technology

- Optimisation of the surface of medical implants for osteointegration (biocompatbility)
 - Pore geometry (no limitation)
 - Pore size (down to ~400 µm)
 - Porosity (up to ~85%)
- Competitive manufacturing costs
 - EBM® production cost, typical: < 2 €/ cm3 trabecular structure

Pictures of bone growing into EBM[®]-manufactured titanium implants with Trabecular Structures[™] Courtesy of Professor Peter Thomsen, MD, Dept. of Biomaterials, University of Gothenburg.

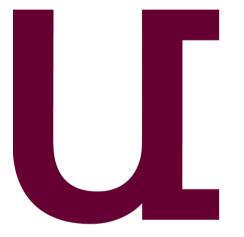
Trabecular Structures[™] Created by EBSM (ARCAM) Technology

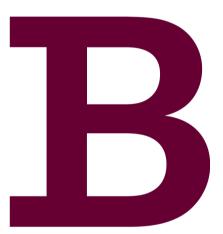


Trabecular Structures[™] Created by EBSM (ARCAM) Technology

Manufacturing Methods Post-Processing

□ Hot Isostatic Pressing (H.I.P.); a pressurised heat treatment process, can be used to enhance the mechanical properties of metallic implants.




Ratner et al. "Biomaterials Science: An Introduction UNIVERSITY OF to Materials in Medicine, 2nd Edition, Elsevier Academic Press, San Diego, CA, 2004.

BIRMINGHAM

Summary

© AMPLab 2017

Summary

- The biological performance of metallic medical implants depends on the alloy/material type, chemistry, and processing.
- The biocompatibility of the various metallic systems can be expressed in a number of factors:
 - Mechanical biocompatibility
 - Bio-inertness or Bio-tolerance
 - Mechanical performance (e.g. fatigue, wear, strength, etc...)
- Conventional processing techniques (e.g. investment casting, forging, and machining) have achieved consistent performance for the majority of implant classes.
- Novel processing techniques (e.g. metal 3D printing) offers the advantage of customisation.

Research AVE

© AMPLab 2017

Thank You. Questions?

© AMPLab 2017