Bioactive Bone Cements – Advantages and Limitations

Dr. Eamonn de Barra

Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical, Aeronautical and Biomedical Engineering (MABE), and Materials and Surface Science Institute (MSSI). University of Limerick, Ireland.

Higher Education Authority An tÚdarás um Ard-Oideachas

Ceramics for Biomedical Applications

Alumina on Alumina Hip Bearing

Dental Restoratives

Calcium Phosphate Bone Substitute

Ceramics of Implant Use

Bioactivity spectrum for various bioceramic implants, (A) Relative rate of bioreactivity, (B) Time dependence of formation of bone bonding at an implant interface.¹

1. Hench, L J. Am. Ceram. Soc. 74 (7) 1487-510 (1991)

Bioactive Material

- "one which has been designed to induce specific biological activity"²
- "Bone bonding..... via a time-dependent, kinetic modification of the surface that occurs upon implantation the surface forms a biologically active hydroxycarbonate apatite (HCA) layer which provides the bonding interface with tissues¹
- ".the essential requirement for a material to bond to living bone is the formation of bone-like apatite on its surface when implantedthis in vivo apatite formation can be reproduced in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood

useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27:2907-15

"Can bioactivity be tested in vitro with SBF solution?"⁴

- "Both serum and SBF are supersaturated towards apatite crystals..... system is metastable and will eventually become thermodynamically stable by forming apatite crystals"
- "Bioactivity testing with SBF may lead not only to false positive but also to false negative results"
- "The use of an in vitro protocol for testing the bone bonding potential of a material remains a very attractive concept and should be contemplated very carefully"

Bioactive Bone Cements

Bone "Cement" differentiated from Bone "Substitute" Implies:

- In situ setting takes up form of individual defect
- Load bearing
- Adhesive (Necessary for stress transmission)
- Bioactive
- Fixation of other devices (Metal/Ceramic/Polymer)

Mutually Exclusive for high strength (density) ceramics

Fixation of Orthopaedic Devices

Design Criteria for Orthopaedic Bone Cement

- Ease of Placement and Handling
- Chemical Adhesion Hydrophyllic
- Modulus Match with Bone
- Non-cytotoxic (no foreign body response)
- Bioactive (Osteoconductive / Osteoinductive)
- If resorption required match regeneration rate
- Rapid Setting
- Dimensionally Stable
- Radiopaque
- Suitable Matrix for drug delivery
- Mechanical & Fracture Properties similar to bone at target

Bone Cement Mechanical & Fracture Properties

- Ceramic properties can be characterised as:
 - brittle (low fracture resistance, flaw tolerance)
 - low tensile strength (fibers are exception)
 - poor fatigue resistance (relates to flaw tolerance)
- Bone characterised as:
 - Composite in nature (>5 orders of magnitude in length scale)
 - Variable dependant on site and orientation
 - Viscoelastic
 - Poor fatigue resistance (but built-in repair mechanisms)
- Implies ideal bone cement should be composite (Biomimetic)

Compressive Strength of Bio-ceramics, Composites and Polymers ⁶

6.

Tensile Modulus and Strength of Bioceramics, Composites and Polymers ⁶

BONE CEMENTS

in TOTAL JOINT REPLACEMENTS

PMMA Bone cement

2-component system: powder and liquid mixed 2:1

Powder

PMMA/PMA/PS spheres 30-150um (>90%) Radiopacifiers ($BaSO_4/ZrO_2$) (4-30%) Initiator (benzoyl peroxide) (2-3%)

Liquid

MMA monomer (>85%) Co-monomers (10-15%)

Inhibitor

Activator (Dimethyl-p –toluidine) (2-3%)

- Mix components together to a doughy stage
- Injected into prepared site, and allowed to cure via free radical polymerisation

C=0

CH₃

[-CH₂-C-]_n

Intraoperative Complications

- Nerve Injury
- Vascular Injury
- Cement Reaction/Fat Embolus
- Fracture/Canal Perforation

Post-Operative Complications

- Fracture
- Instability
- Heterotopic Ossification
- Aseptic Loosening
- Sepsis
- Venous Thrombosis
- Implant Wear and Failure

Causes for Revision (Mayo Clinic)

- 1. Aeseptic Loosening
- 2. Fracture
- 3. Dislocation
- 4. Infection

Aeseptic Loosening

Note the formation of a radiolucent layer as a result of fibrous capsule layer and stress shielding that leads to failure.

Contributions to Aseptic Loosening:

- Complex aetiology.
- No chemical bond.
- Thermal Necrosis.
- Chemical necrosis.
- Osteolysis

- Stress shielding –due to modulus mismatch.
- Shrinkage –up to 22%.

Properties Vs Design Criteria

Properties	PMMA bone cements
Quick setting (3 to 15 minutes)	Yes
Exotherm < 56° C	No
Matrix for drug delivery	No
Osteointegrative (promotes bone growth)	No
Bioactive	if Bioactive ingredient added
Bioresorbable	No
Adequate viscosity	Yes
Radio-opaque	Yes if BaSO ₄ or ZrO ₂ is added
Modulus match with trabecular bone (~10-20 MPa)	No
Adhesive bond formation with bone/implant	No
Dimensional stability	No
Fibrous encapsulation	

- Local toxicity monomer
- Systemic toxicity –cardiovascular, liver & immune impairment

Bioactive Resin Composite- Cortoss™

Di-functional Monomers

- bisGMA
- bisEMA
- TEGDM

Reinforcing / Bioactive Fillers

- 45S5 Glass Ceramic (Combeite crystalline phase)
- Barium-Borosilicate glass

Activator + Initiator

- BPO
- DMPT

Bioactive Resin VCF Composite- Cortoss™

Di-functional Monomers

- Cross-linked Network increased stiffness
- high degree of monomer conversion, lower exotherm-63^oC
- Higher Mw than MMA decreased leachable toxic monomer

Reinforced with ceramic particles

increased stiffness

Bioactive Components

- Increased bone apposition at the interface
- Improved interfacial bond strengths between implant and bone
 - 1. G.J. Pomrink, M.P. Dicicco, T.D. Clineff, E.M. Erbe, Biomaterials 24, 1023 (2003)
 - 2. E.M. Erbe, T.D. Clineff, G. Gualtieri, Eur. Spine J. 10, S147 (2001)

Cortoss[™] Mechanical Property Comparison

Cortoss[™] Dispersed Fill of Vertebral Body

1. A Prospective Randomized FDA-IDE Trial Comparing Cortoss With PMMA for Vertebroplasty SPINE Volume 37, Number 7, pp 544–550 (2012)

Cortoss[™] Mechanical Property Comparison

1. Sabina Gheduzzi · Jason J.C. Webb · Anthony W. Miles, J Mater Sci: Mater Med 17: 421–426 (2006)

Cortoss[™] Strength Loss with Time

1. D. Boyd , M. R. Towler , A. Wren , O. M. Clarkin J Mater Sci: Mater Med 19:1745–1752(2008)

Bioactive Resin VCF Composite- Cortoss™

Disadvantages

- Exotherm- 63°C
- bisEMA more prone to water uptake
 - Plasticisation of matrix loss of stifness
 - Solubility of large Bioglass particles results in swelling and microcracking of matrix – loss of strength
- Bioactivity modest given majority of Bioglass is in crystallised form
- Relatively hydrophobic (though better than conventional PMMA cements) – bone wetting / apposition limited

Glass Ionomer Cements

- Bioactive cement system
- Ion leachable glass powder, poly (acrylic) acid and water
- Carboxylic acid hydrolyses and degrades the glass, releasing ions
- Ions are chelated with COO⁻ groups
- Crosslinking of the polyacrylate chains, embedding glass particles in polysalt matrix

De Barra, E. & Hill, R. 1998. Influence of poly(acrylic acid) content on the fracture behaviour of glass polyalkenoate cements. *Journal of Materials Science*, 33, 5487-5497. Wilson A. D. & McLean J. W. 1988. *Glass-Jonomer Cement*. Quintessence Publishing Co.

Ionomer Glasses

- Fluoro-alumino-silicate glass
- Glass is designed to contain a similar ratio of Ca–P cations for bone formation (If heat-treated crystallises to apatite and mullite)
- Therapeutic release of fluoride anions by cement reduces the risk of secondary caries (dentistry) and stimulates bone deposition (orthopaedics)

Setting Reaction

- Gelation
 - Critical pH and ion concentration is reached
 - Soluble ions will precipitate to insoluble polyacrylates
 - Calcium polyacrylates responsible for the initial setting of the cement
 - Hardening of the cement due to the slower formation of aluminium polyacrylates

 Chain entanglement, hydrogen bonding and weak ionic bonding also play a role in the gelation phase

Setting Reaction

- Maturation
 - Hardening and precipitation process continue for up to 24hrs
 - Cements strength increase for up to a year, this is attributed to the ongoing conventional reaction
 - Results in an increase in the stability of the cement due to an increase in bound water

An increase in the crosslinking of the cement is thought to occur due to increasing aluminium ions relative to calcium ions in the matrix

Properties of Glass Ionomer Cements

- Set at body temperature, without the liberation of heat.
- No appreciable shrinkage on setting
- Wet hydrophilic surfaces.
- Adhesive to bone and metallic devices
- Mild inflammatory response on placement as weak organic acid is quickly neutralised.

- Chemically bond to dentin and bone
- Formation of chemical complexes to substrate i.e. dentine, enamel, cortical and cancellous bone
- Bond to both the organic (collagen) and inorganic (apatite) components
- Adheres to any coherent oxide/passivating layer ie TiO₂, Cr₂O₃, NiO

6. Wilson, A. D., Prosser, H. J. & Powis, D. M. 1983. Mechanism of Adhesion of Polyelectrolyte Cements to Hydroxyapatite. *Journal of Dental Research*, 62, 590-592.

Comparison between GIC and PMMA Cements

	GIC	РММА
•	Chemically adhere to bone and dentin	Mechanically adhere to bone
•	No exotherms on setting	• Thermal necrosis of tissue due to large exotherms on setting
•	No shrinkage of the cement	Shrinkage due to polymerisation
•	Therapeutic release of ions such as fluoride	Chemical necrosis due to leaching of monomer

GPA cement applications:

- (1) restorative tooth filling materials
- (2) luting cements (adhesives)
- (3) Otological devices
- (4) Crannio/Maxillofacial reconstruction**
- (5) Alveolar ridge enhancement

GPA cements have the potential to be used as bone substitutes and cements

Deficiencies of Commercial GICs

 Brittle material, lacks the toughness and fracture toughness for high load bearing applications

	Bone	GIC Commercial
Modulus	7 – 20 GPa	8 – 10 GPa
Toughness	1500 J/m ²	150 J/m ²
Fracture Toughness	0.5 – 2.2 MPa√m	0.7 – 0.9 MPa√m

Factors effecting GIC mechanical properties

- Glass reactivity and composition
- PAA molecular weight
- Use of copolymers
- Particle size and morphology of powders
- Conditioning the glass particles

FTIR

Fracture of GICs

- GICs exhibit thermoplastic polymer behaviour
- Reptation pull-out model by Prentice⁸
- Polymer chain trapped in a tube of entanglements formed by neighbouring chains
- $G \propto (M_n)^2$ this implies the slope should be 2

Contraction of the second seco

Fracture of GICs

Assumptions

- Polymer crosses the fracture plane only once
- No distortion of the tube, distortion requires more work to remove the chain, increasing the plastic zone size
- Assumed that the polymer is monodisperse, whereas it has a polydisperse distribution

Fracture of GICs

- Dependency of toughness on the M_n of the polymer
- Once the critical molar mass is reached, the toughness is independent of M_n
- Force to remove the chain from its tube is greater than that to break the C-C bond of the polymer backbone

Effect of M_n

Toughness (G)

Glass Structure

- Crystal Fixed Bond Angles and Distances. Regular Periodic Structure. Low Energy State.
- Glass Variation in Bond Angles and Distances.
 Disordered and High Energy State. Exhibits a Glass Transition.
- Produced by rapid quenching of a molten liquid.

Glass Structure (2)

- Glasses comprise:
- Network Formers. Form the 3D backbone of the glass. Eg SiO₂.
- Network Modifying Oxides. Break up the glass network eg Na₂O, K₂O, CaO, SrO.
- Bridging Oxygens (Si-O-Si).
- Non-Bridging Oxygens Si-O⁻ Na⁺.

Schematic of the different Q structures that can describe Si network connectivity in glasses.

O_B represents a network-forming bridging oxygen

Network Connectivity

$$NC = 2 + \frac{\left[(2 \times SiO_2) + (2 \times P_2O_5)\right] - \left[2(M_2^{'}O + M^{''}O)\right]}{SiO_2 + (2 \times P_2O_5)}$$

The formula above assumes that P atoms are in network forming role in a range of Qⁿ structures, and the version below assumes that P is an orthophosphate Q⁰ structure and requires modifier cations in a charge balancing role

$$NC = \frac{4[SiO_2] - 2[M_2^{I}O + M^{II}O] + 6[P_2O_5]}{[SiO_2]}$$

where M2^IO and M2^{II}O are the mono- and divalent modifier oxides in the glass

Example Ionomer Glass -Sodium Series (1993!)

 $1.5SiO_2$. $1.0Al_2O_3 0.5P_2O_5$. $1-XCaO.0.5CaF_2 XNa_2O$ where X= 0.1, 0.2, 0.3 and 0.4.

Hypothesis: Replacement of structure on lhs by that on rhs would reduce Tg and increase reactivity. Many aspects of structure unknown at the time (role of F) – Properties difficult to interpret at the time

1.5SiO₂. 1.0Al₂O₃ 0.5P₂O₅. 1-XCaO.0.5CaF₂ XNa₂O where X= 0.1, 0.2, 0.3 and 0.4. Na = Green, K = Red

 $1.5 SiO_2. \ 1.0 AI_2O_3 \ 0.5 P_2O_5. \ 1-X CaO. \\ 0.5 CaF_2 \ XNa_2O_5. \ 1-X CaO. \\ 0.5 CaF_2 \ XNa_2O_5. \ XNa_2O_5. \ 0$

Glass Transition Temperatures and First and Second Peak Crystallisation Temperatures For 1.5SiO₂.O.5P₂O₅.Al₂O₃.XR₂O.(1-X)CaO.0.5CaF₂ Glasses

Example Ionomer Glass -Sodium Series ²⁹Si MAS-NMR

²⁹Si MAS-NMR spectra of sodium glasses All glasses demonstrate the same chemical shift at around -87.0 to -88.0 ppm. Predominantly Q³ structure, but unchanged by Na substitution

Example Ionomer Glass -Sodium Series ³¹P MAS-NMR

³¹P MAS-NMR spectra of sodium glasses of LG3, LG65, LG66, LG67 and LG68. Shows P is in Q¹ pyrophosphate role and with sodium increase shoulder appears (arrow) indicating some Q⁰ orthophosphate formation

Example Ionomer Glass -Sodium Series ²⁷AI MAS-NMR

²⁷AI MAS-NMR spectra of sodium glasses The chemical shift remains the same for all the glasses. The major peak at around 52.0-53.0 ppm is Al(IV) and there is also a shoulder for Al(V) sites and a small peak at -2.0 ppm for Al(VI) sites. The line is a guide to the eye only

 $1.5 SiO_2. \ 1.0 Al_2O_3 \ 0.5 P_2O_5. \ 1-X CaO. 0.5 CaF_2 \ X Na_2O$

19F MAS-NMR spectra of sodium glasses of LG3, LG65, LG66, LG67 and LG68

There are two major peaks at -100.0 and -150.0 ppm corresponding to F-Ca(n) and AI-F-Ca(n). As the amount of sodium in the glass is increased, another two peaks appear at around -132.0 ppm which correspond to a mixed site of F-Ca/Na and at -186.0 ppm for AI-F-Na(n) site. The spinning sidebands are indicated by (*) and the lines are a guide to the eye only

Peak	Species	Chemical shift,	Percentage
		ppm	
1	F-Ca(n)	-97.7	44.9
2	F-Ca(3)Na(1)	-130.2	7.6
3	AI-F-Ca(n)	-158.3	37.8
4	Al-F-Na(n)	-189.0	9.6

Conclusion:

Presence of fluorine in these glasses can be present as

- fluorine calcium complexes
- mixed fluorine calcium complexes
- non bridging fluorines as aluminium fluorine complexes charge balanced by either calcium or sodium.

Substitution of Ca by Na changes the ratio and type of these speciations

Structural roles in Ionomer and Bioactive Glasses

SiO_2

- increases network connectivity
- reduces bioactivity
- rate of network dissolution decreases

 P_2O_5

- increases surface reactivity
- increases bioactivity
- increases degradation rate
- high conc's result in adverse effects

CaO, Na₂O

- reduce network connectivity

Structural roles in lonomer and Bioactive Glasses

F

- increase bone formation at low conc's
- toxic at high conc's

Mg, K, B

- little effect on bioactivity
- Al
- increases network connectivity
- can inhibit bone bonding
- increases resistance to ion exchange surface reactions
- interferes with osteoblast and fibroblast metabolism
- Ta, Ti, Sb, Zr
 - increase network connectivity

Predicting the bioactivity of glasses using the network connectivity or split network models

Figure 1: Bioactivity (defined as t_{Ap}⁻¹, where t_{Ap} is the time of first apatite formation in SBF as detected by XRD) of BG in the Mg series vs. NC_{NMR} calculated from the proportions of Q² and Q³ silicons from ²⁹Si MAS NMR [11]. The vertical line represents the percolation point (NC = 2.4), i.e. the cut-off value for bioactivity as defined by Hill [7].

Robert G. Hill, Delia S. Brauer Journal of Non-Crystalline Solids 357 (2011) 3884–3887

Predicting the bioactivity of glasses using the network connectivity or split network models

Conclusion:

The network polymerisation (Qⁿ structure) strongly influences glass dissolution and subsequent apatite formation, and the NC or split network models are useful and successful in predicting bioactivity

i) They do not take account of the nature of the network modifying cations, in particular their charge to size ratio and their influence on the glass network.

ii) They equate glass dissolution directly to bioactivity.

Example Ionomer Glass – Fluoride Series

1.5SiO₂ Al₂O₃ 0.5P₂O₅ CaO XCaF₂

GLASS CODE	Х
LG45	0.00
LG44	0.25
LG3	0.50
LG26	0.66
LG2	0.75
LG42	1.00

Serenocem[™] Capsules

Serenocem[™] Granules

EM scan of granules, showing micro pores. magnification x 20

Hydrophilic granules absorb blood to produce fibrin clot.

Produced by incorporating $CaCO_3$ into the cement which generates CO_2 in-situ, foaming the cement. Sold as a cancellous bone substitute.

GPA Cement BONE SUBSTITUTES

e.g. (a) Cranial bone plates(b) Maxillofacial implants

Wax Impression formed via CAT Scan

Custom Plate formed + Autoclaved

Placement of GI Cranial Plate

NB This product off market

Glass Ionomer cements

- Advantages
 - Non-exothermic setting reaction
 - Adhesive bond formed with bone and metals
 - Bioactive ions incorporated
 - Low systemic toxicity
 - Reduced local toxicity
- Disadvantages
 - Inferior mechanical properties
 - Neurotoxicity of Aluminium and PAA

Acknowledgements

SS- NMR

- Prof Robert Hill QMUL
- Dr. Natalia Karpukhina QMUL
- Dr Rob V. Law Imperial

1 / Quantity of Data

Conclusion: Team performance per metre is a constant

