

Instituto de Cerámica y Vidrio, CSIC 17-19 June, 2015

Biocompatibility and in vitro tests

Maria Helena Fernandes

Laboratory for Bone Metabolism and Regeneration

Faculty of Dental Medicine, UP

The Bone tissue

Complex mineralized living tissue, having the property of marked rigidity and strength while still maintaining some degree of elasticity.

Trabecular bone

15 – 25% volume calcified.Filled with bone marrow.Metabolic function

Cortical bone 80 – 90% volume calcified. Mechanical and protective functions

Bone is continuously in a **remodeling process:**

(resorption of old bone and formation of new bone) Maintenance of bone tissue integrity and mineral homeostasis

To accomplish this high metabolic activity ...

> Bone is **highly vascularized** Supriment of oxygen, nutrients, progenitor cells, growth factors Removal of metabolism products

The bone microenvironment: The bone cells

 Osteoclasts
 Osteoblasts
 Bone surfaces undergoing remodeling

> Osteocytes Inside the matrix

Bone lining cells Resting bone surfaces

The Bone tissue: Bone regeneration (time line)

- Hematoma/inflammatory response/Angiogenesis
- Migration of bone precursor cells
- Repair:

formation of an immature bone (primary stabilization)

Remodeling:

replacement of the immature bone by the mature bone (Occurs slowly over months to years and is strongly influenced by local mechanical stress placed on bone)

Bone formation

- Bone formation is always
 preceded by vascular invasion
- Osteogenesis occurs in the vicinity of newly formed blood vessels

Remodeling

(coordinated activity of OC and OB)

Regeneration of the form, structure and function

Incorporation / replacement of a bone graft

Similar to the regeneration process that occurs with a bone fracture

Following implantation

Inflammatory response/Angiogenesis Protein adhesion to the material surface Adhesion of osteoprogenitor cells to the material surface (via protein layer) Formation of an immature bone Remodeling phase: OC/OB activity

Bone formation

intimate interaction angiogenesis/osteogenesis

Material New bone

Blood vessel

Osteoblasts

Remodeling

Osteoclasts

Cell culture models to address bone/biomaterial interaction

Relevant cell types and cell types interactions

Cell culture models of the bone/biomaterial interface

Vascularization/angiogenesis

......

<u>Cell cultures:</u> equipment

Safety Cabinet

Incubator 37 °C; humidified atmosphere 5% CO_2 / ar

Appropriate culture medium

Culture flasks and plates

Representative model of the osteoblastic differentiation

Decreasing proliferation

Increasing differentiation

Primary culture

- Culture of a bone marrow suspension
- Outgrowth from bone explants
- Comercial MSC
 - 37 °C; 5% CO₂/air 1 – 2 weeks

(70 – 80% confluency)

Subculture (to expand the cells)

Standard culture conditions:

Culture medium: alfa-MEM; DMEM 10% fetal bovine serum Penicillin / Streptomycin; Anphotericin B

50 mg/ml ascorbic acid Dexamethasone (10 nM) b-glycerophosphate (10 mM)

Osteoblastic differentiation

Characterization of the cell behaviour:

- Cell adhesion to the material substrate
- Cell viability/Proliferation (MTT, ADN, Protein)
- Apoptosis
- Cell cycle
- Morphology/F-actin cytoskeleton
- Focal adhesion points
- Expression of osteoblastic genes (Runx-2; Col-1; ALP; OC; RUNKL; OPG; ...)
- Functional activity Alkaline phosphatase activity Formation of a mineralized matrix
- Intracellular signalling pathways

Biochemical, histochemical, immunohistochemical and molecular methodologies; SEM, CMSM

Osteoblastic cell cultures: Proliferation / differentiation pathway

Human bone marrow-derived osteoblastic cell cultures

Characterization of the cell behaviour

Gene expression profile

Runx-2; Col-1; ALP; OC; OPG; RANKL;

Cell proliferation (SEM images

Alkaline phosphatase staining

Matrix mineralization (SEM)

Osteoblastic cell cultures: Proliferation / differentiation pathway

Human bone marrow-derived osteoblastic cell cultures

Inverse relationship between proliferation and differentiation

Osteoblastic cell cultures: cells / biomaterials interactions

Human bone marrow-derived osteoblastic cell cultures

Cell ahesion: standard tissue culture plates

Ahesion to HA substrates with different topographies; 30 min

Culture platesDegradable ceramicImage: Degradable ceramicImage: Degra

CLSM of cells stained for F-actin cytoskeleton (green) and nucleus (red)

Gene expression profile

Runx-2; Col-1; ALP; OC; OPG; RANKL;

Cell morphology

Human bone marrow-derived osteoblastic cell cultures

Formation of a cellular mediated mineralized matrix in several biomaterials

CEMUP x10000 E0=15kV WD=15mm

Illustrative studies

Ceramic composites

Biomaterials, 26: 485-493 (2005)

Macroporous ceramics

Materials Science and Engineering C 29: 930-935 (2009)

Collagen substrates

Connective Tissue Research, 50: 336-346; 2009

Chitosan hybrid membranes

Biomaterials 26: 485-493 (2005) Acta Biomaterialia 5: 346-355 (2009)

Illustrative study

J Biomed Mater Res A 101: 1080-1094 (2013)

Illustrative study

J Biomed Mater Res Part A: 101A: 10–1094 (2013)

Illustrative study

Bioceramics/carbon nanotubes (CNT) composites (conductive substrates) Electrical stimulation

Illustrative study

Guided proliferation of osteoblastic cells on patterned surfaces

J Biomed Mater Res B, 101: 762-9 (2013) Dental Materials, 28:1250-1260 (2012) Dental Materials 27: 581-589 (2011) Microsc Microanal 16:670-67 (2010)

Representative model of the osteoclastic differentiation

Erythrocytes

Obtention:

- Isolation of the peripheral mononuclear cells from a buffy coat (Buffy coat + PBS) + Histopaque: mixt of monocytes, platelets and lymphocytes
- Magnetic separation of CD14+ cells
- Cell culture (2 x 10⁶ cell/ml); 21 days a-MEM; 10% human AB serum; 1% glutamine; 30 mg/ml ascorbic acid 25 ng/ml MCSF; 30 ng/ml RANKL

Characterization of the cell behaviour:

- Cell adhesion to the material substrate
- Total protein content
- Apoptosis
- Morphology
- Formation of actin rings
- Immunostaining of Calcitonin and Vitronectin receptors
- Expression of osteoclastic genes (c-myc; c-src; TRAP; CATK, CA; ...)
- Functional activity TRAP activity Formation TRAP+ multinucleated cells Resorption activity
- Intracellular signaling pathways

Formation of multinucleated cells (TRAP staining)

Actin ring

SEM: resorption activity

Characterization of the cell behaviour

Expression of osteoclastogenic genes

Illustrative studies

TRAP staining in different biomaterials

Hydroxyapatite seeded with OC cells

Multinucleated cells

Actin rings

Vitronectin receptor

Illustrative study

Modulation of bone cell behaviour by surface topography in **Hydroxyapatite substrates)**

В I П

Osteoclastic cell cultures

Acta Biomaterialia 8:1137-45 (2012)

Representative model of angiogenesis

Human umbilical vein endothelial cells (HUVECs)

Obtention:

Endothelial cells isolated from umbilical vein Culture in 1% gelatine pre-coated substrates Medium M199; 20% fetal bovine serum 1% glutamine; penicillin/ctreptomycin Trypsin / EDTA solution (70 – 80% confluency)

 First subculture (2x 10⁴ cell/ml) 1% heparin; 1 mg/ml EGFS; 7 days

Commercial endothelial cells of different origins

Microvascular endothelial cells

Appropriate culture medium for angiogenic differentiation

Characterization of the cell behaviour:

- Cell adhesion to the material substrate
- Cell viability/proliferation. Pattern of cell growth
- Apoptosis
- Cell cycle
- Morphology / F-actin cytoskeleton
- Immunostaining of PECAM-1, VE-caderin, vWB
- Expression of endothelial genes (PECAM-1, VE-caderin, factor vWB)
- Functional activity Production of NO Formation of tubular-like structures

Characterization of cell behaviour

Circular pattern of cell proliferation

PECAM-1 factor vWB VE-cadherin

Capillary-like tube formation

Capillary-like tube formation

Formation of tube-like structures after the addition of a extracellular matrix (Matrigel)

OB/EC interaction

Separation of the two cell populations (flow cytometry) Characterization of each population for typical phenotype features

Illustrative study

Immunostaining of osteoblast cells, endothelial cells and co-cultures

Cell proliferation; 45:320-334 (2012)

Illustrative studies

Co-cultures

Macroporous granules of nanostructuredhydroxyapatite agglomerates **Co-cultures of osteoblastic and endothelial cells**

Day 21

Co-cultures of osteoblastic and osteoclastic cells

Co-cultures of osteoblastic and osteoclastic cells

(flow cytometry) Characterization of each population for typical phenotype features

Co-cultures of osteoblastic and osteoclastic cells

Illustrative study

Vitronectin and Calcitonin receptors

789 bp 6 700 MG63 II 300 700 -PBMC 300 700 -PBMC + MG63 I 300 -700 -PBMC + MG63 II 300 -100 80 🗆 MG63 II 60 PBMC PBMC + MG63 I 40 PBMC + MG63 II 20 0

TRAP

CATK CA2

C-SEC

Gene expression

ALP

COL1

BMP-2 c-myc

Representative Cell culture models:

To address the cytocompatibility of biomaterials regarding cells involved in the bone regeneration events

To perceive key Biomaterial/Cell interactions, to understand cellular recognition of material surfaces, and specific cellular events leading to efficient new bone growth

..... To exploit/optimise relevant cellular/material interactions to improve bone regeneration events

In vitro models

Advantages

Information on the molecular and cellular behaviour in controlled experimental conditions To address specific aspects of the cellular behaviour in the absence of the in vivo complexicity

Limitations

- Alteration of the cell phenotype with the culture time
- Absence of the integrated molecular, cellular and tissue in vivo complexicity

In vitro observations can not be extrapolated to *in vivo* First stage of biological response to biomaterials

Bibliography

- Datta HK, Ng WF, Walker JA, Tuck SP, Varanasi SS. The cell biology of bone metabolism. J Clin Pathol 2008; 61:577-87.
- Matsuo K, Irie N. Osteoclast–osteoblast communication. Archives of Biochemistry and Biophysics 2008; 473: 201–209.
- Kanczler JM, R.O.C. Oreffo ROC. Osteogenesis and angiogenesis: the potential for engeneering bone. European Cells and Materials; 15: 100-110; 2008.
- Declercq H, Vrekenb N, Erna De Maeyerb E, et al. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions:comparison of different isolation techniques and source. Biomaterials 25 (2004) 757–768
- Kartsogiannis V, Ng K. Cell lines and primary cell cultures in the study of bone cell biology. Molecular and Cellular Endocrinology 2004; 228: 79-102.
- Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part II: elect of ascorbic acid, b-glycerophosphate and dexamethasone on osteoblastic dilerentiation. Biomaterials 2000; 21: 1095-1102.
- Laranjeira MS, Fernandes MH, Monteiro FJ. Reciprocal induction of human dermal microvascular endothelial cells and human mesenchymal stem cells: time-dependent profile in a co-culture system. Cell Proliferation 2012;
- Costa-Rodrigues J, Fernandes A, Fernandes MH. Spontaneous and induced osteoclastogenic behaviour of human peripheral blood mononuclear cells and their CD14+ and CD14- cell fractions. Cell Prolifer 2011; 44: 410-419; 2011.
- Laranjeira MS, Fernandes MH, Monteiro FJ. Innovative macroporous granules of nanostructured-hydroxyapatite agglomerates: Bioactivity and osteoblast-like cell behaviour. Journal Biomedical Materials Research Part A 2010: 95A: 891-900.
- Santos C, Gomes PS, Duarte JA, Franke RP, Almeida MM, Costa MEV, Fernandes MH. Relevance of the sterilization-induced effects on the properties of different hydroxyapatite nanoparticles and assessment of the osteoblastic cell response". Journal of the Royal Society Interface 2012; 9: 3397-3410.
- Costa-Rodrigues J, Fernandes A, Lopes MA, Fernandes MH. Hydroxyapatite surface roughness: Complex modulation of the osteoclastogenesis of human precursor cells. Acta Biomaterialia 2012; 8:1137-45.
- Carvalho A, Pelaez-Vargas A, Gallego-Perez D, Grenho L, Fernandes MH, de Aza A, Ferraz MP, Hansford D, Monteiro FJ. Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration. Dental Materials 2012; 28: 1250-1260.