

Biological responses of cells and tissues to biomaterials

Marianna Peroglio Research Scientist Summer School - Ceramic & glass science & technology, application to bioceramics & bioglasses – 17 June 2015 – Madrid, Spain

AO Foundation

- Founded in 1958
- Medically guided, global network of surgeons
- World's leading educational and research organisation for trauma and musculoskeletal treatment
- With more than 10,000 surgeons, in more than 100 countries, it is one of the most important and extensive networks in medicine
- Global knowledge network—interdisciplinary teamwork
- International faculty of over 3,000 experts

AO Research Institute Davos

Musculoskeletal Regeneration

Biomedical Services

Preclinical Services

Musculoskeletal Infection

Outline

- Lexicon
- Classification of biomaterials
- Cell-material interactions
- Tissue-material interactions
- Examples of cell and tissue interactions with:
 - o Ceramics
 - o Metals
 - o Polymers
- Summary
- Future areas of research

Lexicon

- Biomaterial
- Implant
- Primary and secondary stability
- Osseointegration
- Bone to implant contact
- Fibrous capsule
- Inflammation (acute and chronic)
- Osteoblast
- Stem cell

Biomaterial: evolution of the definition

- Williams **1987**: "A biomaterial in a nonviable material used in a medical device, intended to **interact** with biological systems"
- Williams **1999**: "Biocompatibility is the ability of a material to perform with an **appropriate host response** in a specific situation"
- NIH: "Biomaterial is any substance or combination of substances, other than drugs, synthetic or natural in origin, which can be used for any period of time, which augments or replaces partially or totally any tissue, organ or function of the body, in order to maintain or improve the quality of life of the individual"

Application of biomaterials

Classification of biomaterials

Composition	Metals & alloys \rightarrow Ss , Co-Cr, Ti , Ti-6AI-4V , Ni-Ti, Mg Polymers \rightarrow PMMA, PLA, PGA, PE, PEEK Ceramics & glasses \rightarrow Al ₂ O ₃ , ZrO ₂ , CaP , BAG Composites \rightarrow bone (unprocessed), BCP-PCL, BAG-PLA, PU-HA
Structure	Bulk → implants (stems, plates, screws) Porous → scaffolds Surface → topography (macro, micro, nano), bioactive coating on «bioinert» material
Source	Natural \rightarrow bone grafts, hyaluronic acid, fibrin, collagen, chitosan, cellulose Synthetic \rightarrow PCL, PMMA, PEEK
Response	Toxic «Bioinert» $\rightarrow Al_2O_3, ZrO_2$ Bioactive \rightarrow osteoconductive, osteoinductive \rightarrow HA, TCP, BCP, BAG Bioresorbable \rightarrow BCP, PCL, PU, PLA, PGA, Mg
Function	Temporary $\xrightarrow{7}$ non biodegradable \rightarrow temporary implants (polished metals) biodegradable \rightarrow maxillofacial screws Permanent \rightarrow hip prostheses, spine cages

Surfaces ... what do you see ?

Surfaces... what do cells see ?

Rough & smooth topography (micro/nano range)

Cell-material interactions Interactions levels

🗶 AO Foundation

Molecular level events at implant surface

•*Chemistry* – determines the types of intermolecular forces, governing interaction with proteins

•*Hydrophobicity* – hydrophobic surfaces often bind protein more strongly (can limit cell adhesion)

•*Heterogeneity* – surface non-uniformity, domains interact differently with proteins

- •*Potential* influences ion distribution & interaction with proteins (dependant upon topography / chemistry)
- •**Topography** greater texture exposes discontinuities for interaction with proteins

Cell-material interactions

Masters K.S., Anseth K.S., Advances in Chemical Engineering 2004 29: 7.

Tissue-material interactions

Gittens RA. Acta Biomaterialia 2014

Implant osseointegration and the role of microroughness and nanostructures:

Lessons for spine implants

19

🇶 AO Foundation

Outcome of acute inflammation

Adapted from Kumar V, Abbas AK, Aster JC eds. Robbins Basic Pathology 9th Ed. 2013

Surface roughness

Surface roughness

Gittens RA. Acta Biomaterialia 2014

Implant osseointegration and the role of microroughness and nanostructures:

Lessons for spine implants

25

Ways to obtain surface roughness

Gittens RA. Acta Biomaterialia 2014

Implant osseointegration and the role of microroughness and nanostructures:

²⁶ Lessons for spine implants

Examples: "bioinert" ceramics

Synergic effect of micro & nanoroughness SEM Profilometry

MC3T3-E1 (murine cell line) Wettability

MS: mirror-polished, SB50: sand-blasted 50 μm SB150: sand-blasted 150 $\mu m,$ E: etched

Ito H. Dent Mater J 2013

Response of osteblast-like cells to zirconia with different surface topography

Synergic effect of micro & nanoroughness

Ti etch: sand-blasted (100-150 μm) + hot acid etched Zr etch: sand-blasted (100-150 μm) + hot alkaline etched Zr blast: sand-blasted (100-150 μm)

Hempel U. Clin Oral Implant Res 2009

Response of osteblast-like SAOS-2 cells to zirconia ceramics with different surface topographies

Synergic effect of micro & nanoroughness

Zirconia vs. Ti in vivo

4 weeks

100 Zirconia 90 Titanium 80 70 BIC % 60 50 40 30 20 10 0 12 weeks 4 weeks 1 week

12 weeks

Depprich R. Head & Face Medicine 2008

Osseointegration of zirconia implants compared with titanium: an in vivo study.

Zirconia and alumina particles

Roualdes O. Biomaterials 2010

In vitro and in vivo evaluation of an alumina-zirconia composite for arthroplasty applications.

Examples: "bioactive" ceramics

Biphasic calcium phosphates In vitro

TCP

Yuan H. PNAS 2010

Osteoinductive ceramics as a synthetic alternative to autologous bone grafting.

34

Biphasic calcium phosphates

Yuan H. PNAS 2010

Osteoinductive ceramics as a synthetic alternative to autologous bone grafting.

Biphasic calcium phosphates

Wang L. *J Biomed Mater Res A* **2015** Effect of particle size on osteoinductive potential of microstructured biphasic calcium ₃₆phosphate ceramic.
Biphasic calcium phosphates

"Cut-off" ~ 50 µm particle size/porosity

37

- Vascularisation \rightarrow nutrients and mesenchymal stem cell infiltration
- Micropores are a pre-requisite for inductive bone formation \rightarrow accumulation of growth factors
- Particle-size mediated inflammation (initial stimulation and further protease/anti-protease balance)
- Compared to previous studies (blocks instead of particles): earlier mineralisation (~half time)
- Resorption: TCP prepared from calcium-deficient apatite did not resorb after 2.5 years of implantation

Wang L. J Biomed Mater Res A 2015 Effect of particle size on osteoinductive potential of microstructured biphasic calcium phosphate ceramic.

Examples: metals

Soft tissue reaction to metal surfaces: polished versus rough

From Hand Problem to Research Based Solution ...

- 1 in 6 fractures are distal radius fractures
- Tendons in contact with the implant may incur a cellular reaction, tendon adhesions, limited palmar flexion & rupture.
- Tendon damage & rupture more common with Ti & Ti alloy implants, compared to steel of similar design. (Sinicropi, M.S et al., 2001)

• Why?

In vitro fibroblast cell behaviour

Surface microtopography can control cell growth, spreading & behaviour.

50um

50 um

Soft tissue reaction - cpTi surfaces

Wound healing contraction force

 Connective

 Liquid Filled Void

 Fat Cells

 Loose Connective Tissue

 Fascia

Wound healing contraction force

Hayes JS. J Biomed Mater Res Part B 2012

In vivo evaluation of defined polished titanium surfaces to prevent soft tissue adhesion.

Bone tissue reaction to metal surfaces: polished versus rough

Surface microtopography & osteoblast shape

Hayes JS Eur Cell Mater 2010.

The role of surface microtopography in the modulation of osteoblast differentiation.

Another example: cpTi

Labelling for cytoskeletal components. Red: actin, green: tubulin

Hayes JS *Exp Reviews* **2010**

Surfaces to control tissue adhesion for osteosynthesis with metal implants. A Foundation

Effect of surface on screw removal

3 biomaterials:

- Stainless steel (ISO 5832-1),
- Commercially pure titanium (cpTi; ISO 5832-2)
- Titanium alloy: Titanium-6%Aluminium-7%Niobium (TAN; ISO 5832-11)

5 surface treatments:

- SS polished stainless steel
- TS microrough Ti
- NS microrough TAN,
- TE electropolished Ti
- NE electropolished TAN

Effect of surface on screw removal

SS-polished stainless steel, TS-microrough Ti, NS-microrough TAN, TE-electropolished Ti, NE-electropolished TAN

Polishing significantly reduces the torque required for screw removal in both cancellous & cortical bone

Biological reaction to bone – cpTi / TAN

⁴⁸ Courtesy of Geoff Richards

Direct osseointegration

Biological reaction to bone - EPSS

Fibro-osseointegration No issues with stability!

⁴⁹ Courtesy of Geoff Richards

Smooth versus rough surface

18 months in sheep tibia

standard

polished

Hayes JS Exp Reviews 2010

50 Surfaces to control tissue adhesion for osteosynthesis with metal implants. A Foundation

Smooth versus rough surface

Adapted from Hayes JS Exp Reviews 2010

Surfaces to control tissue adhesion for osteosynthesis with metal implants.

Biological reaction to bone - TAN

Difficult to remove IM nails, especially in young patients

IM Nail - 12 mo implantation

0.758µm

10.00

Biological reaction to bone – TAN (polished)

IM Nail - 12 mo implantation

0.18µm

Courtesy of Geoff Richards

Biological reaction to bone – EPSS

IM Nail - 12 mo implantation

Hayes JS Eur Cell Mater 2009

An in vivo evaluation of surface polishing of TAN IM nails for ease of removal.

Effect of polishing

12 months, sheep tibia

IM: intramedullary; TAN: titanium-6% aluminium-7% niobium (wt%)

Hayes JS *Exp Reviews* **2010**

55 Surfaces to control tissue adhesion for osteosynthesis with metal implants. A Foundation

The effective roughness spectrum

Adapted from Hayes JS Exp Reviews 2010

Surfaces to control tissue adhesion for osteosynthesis with metal implants.

Infection rates - surfaces

LCP Туре	n	Rate of Infection (%)	ID ₅₀ (CFU)
Polished TAN	22	45	7.1 x 10 ⁶
Standard TAN	21	38	6.3 x 10 ⁶
Standard Ti	19	42	3.9 x 10 ⁶
EPSS	22	54	3.2 x 10 ⁶
Polished Ti	20	50	2.7 x 10 ⁶

In a stable locking IF plate system **no large differences found bet materials** (cpTi, TAN, EPSS) **or surface roughness** for infection susceptibility *in vivo (without fracture or major tissue trauma)*

Moriarty TF. Int J Artif Organs 2009

Influence of material and microtopography on the development of local infection in vivo

Examples: polymers

Plasma-modified PEEK: in vitro

Survey of cell adhesion to materials (hydrophobicity on very smooth surface)

Adapted graph courtesy (Harbers, G. M., & Grainger, D. W.)

Surface wettability of plasma treated PEEK

XPS surface analysis of oxygen incorporation as a function of plasma treatment time

AO Foundation

Long-term stability of surface treatment

AO Foundation

AFM of evaluation of surface topography

Cell proliferation on PEEK

Poulsson AHC in PEEK Biomaterials Handbook (Kurtz SM, Elsevier ed). **2012** Surfaces to control tissue adhesion for osteosynthesis with metal implants.

⁶⁵ Data from 5 independent femoral heads, ± st. dev. GLM ANOVA with Tukey *post-hoc,* significance P<0.05

Alkaline phosphatase activity on PEEK

Poulsson AHC in PEEK Biomaterials Handbook (Kurtz SM, Elsevier ed). **2012** Surfaces to control tissue adhesion for osteosynthesis with metal implants.

AO Foundation

Gene expression profile of HOB on PEEK

Poulsson AHC in PEEK Biomaterials Handbook (Kurtz SM, Elsevier ed). 2012 Surfaces to control tissue adhesion for osteosynthesis with metal implants. A Foundation

Nodule formation on PEEK

68

Conclusions: in vitro study

- Oxygen plasma treatment has increased the **surface energy** of PEEK substrates
- Surface treatment is **stable** for 26 months in air (also > 18 months in PBS at 37°C)
- **Optimal levels** of surface treatment have been identified for HOB cells
- **ALP expression** is more characteristic for hOB cells on the treated surfaces
- **Nodule formation** was higher from day 7 on all treated surfaces compared to untreated PEEK
- The influence of these surfaces on hOB cell **gene expression** indicates that the differentiation is up-regulated at earlier time points

These *in vitro* findings indicate that this surface modification is likely to improve bone integration to PEEK implants

Plasma-modified PEEK: in vivo

Materials & methods – in vivo

Groups	
Machined PEEK Implant	PA
Injection Moulded PEEK Implant	PO
Plasma modified Machined PEEK Implant	PAm
Plasma modified Injection Moulded PEEK Implant	POm

Ovine Model 24 Swiss Alpine Sheep Female, 60-65kg, 3-4yrs Cancellous bone of the proximal tibia and distal femur Cortical bone of the tibiae Time-points: 4, 12 and 26 weeks, 8 per time-point

Characterisations

Surface analyses: XPS, WLP, AFM and WCA. In vivo analysis: Radiographs, Fluorochrome labelling Explant analyses: Radiographs, Mechanical push-out testing, histology and histomorphometry

Preclinical study

Schematic of the bilateral model implantation areas in the tibiae and femurs, where the implant sites are annotated and division between histology and mechanical testing is shown.

Custom made jig with k-wires

All 4 implants in place in the tibial diaphysis with 2 marker screws on either side

Push-out force

Proximal tibia (cancellous bone). 4 weeks after implantation

PA -machined PEEK, PAm- modified machined PEEK, PO- moulded PEEK, POm- modified moulded PEEK Pink: bone, blue: soft tissue, white: bone marrow.

Poulsson AHC Biomaterials 2014

Intravital

orange

and xylenol

Osseointegration of machined, injection moulded and oxygen plasma

Tibial diaphysis (cortical bone). 4 weeks after implantation

PA -machined PEEK, PAm- modified machined PEEK, PO- moulded PEEK, POm- modified moulded PEEK

Poulsson AHC Biomaterials 2014

Intravital

orange

and xylenol

Osseointegration of machined, injection moulded and oxygen plasma

Proximal tibia (cancellous bone). 12 weeks implantation.

PA -machined PEEK, PAm- modified machined PEEK, PO- moulded PEEK, POm- modified moulded PEEK

Poulsson AHC Biomaterials 2014

Intravital

orange

and xylenol

Osseointegration of machined, injection moulded and oxygen plasma

Tibial diaphysis (cortical bone). 12 weeks after implantation

PA -machined PEEK, PAm- modified machined PEEK, PO- moulded PEEK, POm- modified moulded PEEK

Poulsson AHC Biomaterials 2014

Intravital

orange

Osseointegration of machined, injection moulded and oxygen plasma

Proximal tibia (cancellous bone). 26 weeks implantation.

PA -machined PEEK, PAm- modified machined PEEK, PO- moulded PEEK, POm- modified moulded PEEK

Poulsson AHC Biomaterials 2014

Intravital

orange

and xylenol

Osseointegration of machined, injection moulded and oxygen plasma

Tibial diaphysis (cortical bone). 26 weeks after implantation

PA -machined PEEK, PAm- modified machined PEEK, PO- moulded PEEK, POm- modified moulded PEEK

Poulsson AHC Biomaterials 2014

Intravital

orange

and xylenol

Osseointegration of machined, injection moulded and oxygen plasma

PEEK in vivo: cancellous bone: BIC and BD

PA -machined PEEK, PAm- modified machined PEEK, PO- moulded PEEK, POm- modified moulded PEEK

Poulsson AHC Biomaterials 2014

Osseointegration of machined, injection moulded and oxygen plasma

⁸⁰ modified PEEK implants in a sheep model.

PEEK in vivo: cortical bone: BIC and BD

PA -machined PEEK, PAm- modified machined PEEK, PO- moulded PEEK, POm- modified moulded PEEK

Poulsson AHC Biomaterials 2014

Osseointegration of machined, injection moulded and oxygen plasma

⁸¹ modified PEEK implants in a sheep model.

Conclusions: *in vivo* study

- Limited inflammatory response for all materials
- Good osseointegration of all materials
- Micro-roughness (machining) has a significant influence on bone-to-implant contact and push-out force
- Oxygen plasma induced an improved osseointegration and implant stability at early time point in cancellous bone

From in vitro \rightarrow to in vivo \rightarrow to the patient? \rightarrow which patient?

Summary

Summary

- Definition of goal/research question is fundamental
- Experimental design is the next key step

Let's see if the subject responds to magnetic stimuli... ADMINISTER THE MAGNET! Interesting...there seems to be a significant decrease in heart rate. The fish must sense the magnetic field.

http://www.hawaii.edu/fishlab/NearsideFrame.htm

What else?

- Gene level and protein level
- Short term vs. long term cultures
- In vivo veritas?
- How comparable are different studies?
- How important are the controls, the blanks (e.g. materials cultured in the same conditions but without cells) and the artifacts!
- Be critical:

statistically significant difference may be ≠ biologically significant difference

- Controversies:
 - do not look only at one paper
 - high impact journal in the field is important

Future areas of research

Surfaces: What to mimic ? **Swiss Mountain Mimetics**

Courtesy of Geoff Richards AO Foundation

Future lines of research

- Advanced materials:
 - o surface patterning
 - o gradient materials
 - o 3D printing
- More predictable in vitro tests
- Application of 3R principle to *in vivo* tests: https://www.nc3rs.org.uk/the-3rs

- As complete documentation as possible, especially for in vivo
- Bridge the gap between *in vitro* and *in vivo* with *ex-vivo* models

Surface patterning

Peng R. Biomaterials 2012

Yao X. *Advanced Materials* **2013** Cell-material interactions revealed via techniques of surface patterning.

Gradient materials

Kunzler TP. Biomaterials 2007

Cell response of osteoblasts and fibroblasts to surface roughness was studied by means of gradient substrata with a continuously varying roughness value and similar topographical features.

Osteoblasts prefer the rougher part whereas fibroblasts favored the smoother part of the roughness gradient.

titanium surface with micro-roughness gradient

Cell-material interactions are cell-type specific

Ex-vivo bone culture in a bioreactor

• Osteoarthritic human femoral heads (total hip replacement)

[C.M. Davies et al. (2006)]

Viability of bone cores after 2 week culture

[M.J. Stoddart et al. (2006)]

Acknowledgements

Prof. Geoff Richards (Director AO Research Institute Davos)

- Prof. Mauro Alini (vice-director AO Research Institute Davos)
- Dr. David Eglin (Leader Polymer Group, AO Research Institute Davos)
- Dr. Alexandra Poulsson (post-doc AO Research Institute Davos)
- Dr. Fintan Moriarty (Leader Musculoskeletal Infection Program, AO Research Institute)

Acknowledgements

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

eCM conferences

www.ecmjournal.org

eCM Next Events

2015 eCM XVI: Implant Infection (Orthopaedic & Musculoskeletal Trauma related) 24th - 26th June 2015, Congress Center, Davos, Switzerland

2016 eCM XVII: Stem cells, Bone Fixation, Repair & Regeneration 20th – 23rd June 2016, Congress Center, Davos, Switzerland

2017 TERMIS-EU Conference (no eCM in 2017) TERMIS-EU 26th-30th June 2017 Congress Center, Davos, Switzerland. Conference Chair: Prof. R. Geoff Richards, PhD Conference Program Chair: Prof. Mauro Alini, PhD

2018 eCM XVIII: Cartilage & Disc: Repair and Regeneration 25th - 28th June 2018, Congress Center, Davos, Switzerland

eCM journal

www.ecmjournal.org Published by **AO Research Institute Davos**

Open Access, online only, preclinical research in musculoskeletal field.

CELLS MATERIALS	eCM Journal Created by Scientists, for Scientists	Of
ISSN 1473-2262	NLM: 100973416 (link) The leading Journal of musculoskeletal research.	
Home		۸(
Issues / Manuscripts	eCM nublished by AO Research Institute Dayos	
Search for Papers	cem, published by No Research institute bayos	_
Supplements	eCM provides an interdisciplinary forum for publication of preclinical research in the	— ⊢ ı
Conferences	musculoskeletal field (Trauma, Maxillofacial (including dental), Spine and Orthopaedics).	
About eCM Journal	eCM Impact Factor 2013 4.887. Five year Impact Factor 5.991	<u> </u>
Scope	News	- JV
Submission Instructions		_
Editors	2015 marks 15 years of eCM.	Tio
Info on eCM	eCM started as a concept in 1999 of free science publication. eCM was one of the first open	11
Sponsors	Access scientific journals in the world and initiated the transparent review process (now	
Societies	International Review Panel, eCM always has had rigorous peer revieing and the novel	
Contact	discussion with named reviewers (as would happen in a conference) included as an integral	
eCM Paper notification	part of accepted publications. eCM was set up and remains as a not-for-profit journal. eCM	
Your e-mail	was and is a pioneer with many of its innovative ideas leading the way for major publishing	_
	companies to follow.	<u>ີ</u> .ວ-
Select your country 🗸	Submit your best papers to the piopeer in open access publishing	
	Submit your best papers to the ploneer in open access publishing.	
Register (Info)	As a reminder from 1999, some other events:	
eCM Site search	Bluetooth 1.0 Specification was released in 1999	
	Everyone feared the Millennium Bug- The total cost of the work done in preparation for Y2K	
Find	Was estimated at over US\$300 billion (at that time).	\sim
	The world population reached o billion people - those were the days:	- T 6
A AO Foundation	R.G.Richards.	
	Recent Paners:	
ARTHORE .	in	
	 Enhanced in vitro biological activity generated by surface characteristics of anodically oxidized titanium – the contribution of the oxidation effect Wurihan, A Yamada, D Suzuki2, Y Shibata, R Kamijo, T Miyazaki 	
	A new concept for implant fixation: bone-to-bone biologic fixation D-Y Kim, J-R Kim, KY Jang, K-B Lee	
	 In vivo biological response to extracorporeal shockwave therapy in human tendinopathy CM Waugh, D Morrissey, E Jones, GP Riley, H Langberg, HRC Screen 	6
	 Validation of an <i>in vitro</i> 3D bone culture model with perfused and mechanically stressed ceramic scaffold G Bouet, M Cruel, C Laurent, L Vico, L Malaval, D Marchat 	Orthopaecia
	 Intraosseous transcutaneous amputation prostheses versus dental implants: A comparison between keratinocyte and gingival epithelial cell adhesion in vitro C) Pendegrass, HT Lancashire, C Fontaine, G Chan, P Hosseini, GW Blunn 	

Official Research Journal of : AOCMF, AOTRAUMA, European Orthopedic Research Society (EORS), Swiss Society for Biomaterials (SSB), Tissue & Cell Engineering Society (TCES)

5-year Impact Factor 2013- 5.991

Yearly Impact Factor: 2013 - 4.887

ORS endorses the educational goals and objectiv of the 2013 e OM XIV: Stem & Progenitor Cells for Musculoske lat Regeneration Meeting

RS endorses the educational goals and bjectives of the 2014 eCMXV artilage and Disc. Repair and Regeneration

Thank you for your attention!

marianna.peroglio@aofoundation.org

