

Super-paramagnetic iron oxide nanoparticles (SPIONs) as functionalizing platforms for delivering and tissue regeneration

Lia Rimondini

Magnetic properties of the materials

Residual magnetic moment remains at zero field at room T

Magnetic properties of the materials at the nanosize

- No residual magnetiation at field zero
- Single magnetic domain
- High magnetic susceptibility
- Low energy required for spin inversion
- T generation

Different applications of magnetic nanoparticles

Synthesis of MNPs via wet-chemistry

Magnetite	SiO2-coated magnetite	SiO2-Ca coated magnetite	

Characterizations / Chemical-physical Biological: endothelial cells (MS1)

Characterizations / Chemical-physical Biological: endothelial cells (MS1)

Verné E, et al. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility. Mater Sci Eng C Mater Biol Appl. 2015 ;53:95-103.

General characteristics

Type of nanoparticle	Medium	pH approx	Concentration
Magnetite (Mag)	Water	9.6	1,8 mg/ml
Magnetite – silica (Mag- SiO ₂)	Water	7.9	3,4 mg/ml
Magnetite – silica – calcium (99:1) – Mag-SiO ₂ -Ca(3) CITR	Water	9.2	4,4 mg/ml
Magnetite – silica – calcium (99:1) – Mag-SiO ₂ -Ca(3) IDR	Water	8.3	4,5 mg/ml

* Li Z., Kawashita M., Araki N., Mitsumori M., Hiraoka M., Doi M., 2010, Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer. *Materials Science and Engineering C*, **30**, 990–996.

Silica shell coating (Mag-SiO₂ NPs): the silica shell was obtained by wet chemistry on the magnetic core stabilized with citric acid

^{*1} Singh R. K., Kim T. H., Patel K. D., 2012, *J Biomed Mater Res Part A*, published online in Wiley Online Library (wileyonlinelibrary.com) *2 Stöber W., Fink A., 1968, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. *Journal of colloidal and interface science*, **26**, 62-69

Silica-Calcium shell coating (Mag-SiO₂-Ca(3) NPs) was obtained using two different precursors: calcium citrate and calcium hydroxide

^{*&}lt;sup>1</sup> Singh R. K., Kim T. H., Patel K. D., 2012, *J Biomed Mater Res Part A*, published online in Wiley Online Library (wileyonlinelibrary.com) *² Stöber W., Fink A., 1968, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. *Journal of colloidal and interface science*, **26**, 62-69

Characterizations / Chemical-physical Biological: endothelial cells (MS1)

In vivo evaluation of MNPs

Biodistribution of MNPs - 7 days

Compositional evaluation for iron accumulation (Inductively coupled plasma-atomic emission spectrometry (ICP-AES))

ICP-AES analysis results (2 mg Fe/kg)

*P < 0.05 compared to control - One way analysis of variance (ANOVA) followed by Scheffe's test

Cytocompatibility of MNPs in dynamic conditions

Experimental setting

- Continuous flow bioreactor with a peristaltic pump simulating the blood stream in a capillary
- Humidified incubator at 37°C, 5% CO₂ atmosphere

MS1 cells (30.000 cells/cm²) were seeded at confluence on a strip of electrospun polycaprolactone (PCL)

MS1 cells were subjected to a continuous flow of cell culture medium (DMEM) with MNPs at the concentration of 20 μ g/ml.

Ucciferri N. Nanotoxicology. 2014 Sep; 8(6):697-708.

When MS1 cells were confluent \rightarrow strips were inserted in the bioreactor.

- Experimental times: 2 h, 12 h and 24 h.
- Cell viability tests used: XTT and LDH assay.

Cytocompatibility in dynamic conditions (Mag and Mag-SiO₂ NPs)

Using dynamic culture conditions, the cells morphology appeared typically elongated.

Cytocompatibility in dynamic conditions

SEM and EDS analyses showed MNPs adsorbed onto the MS1 cell membrane. MNPs deposition was not observed when Mag-SiO₂ nanoparticles were used

Conclusion I

- Size and shape control
- Colloidal stability and dispersibility in solution
- Biocompatibility

SPIONs / Cell membrane interaction

Cell/SPIONs interaction via Cell penetrating peptide absorption

- Cell penetrating peptides
- TAT peptide
- Drosophila Antennapedia homodomain –derived penetrating peptide (p Antp)
- 16 AA residues
- Positively charged at neutral pH
- No interaction with negatively charged molecules

- Electrostatic interations
- Alanine and lysine competitive subtraction

Grasso G, Deriu M, Prat M, Rimondini L, Vernè E, Follenzi a, Danani A. Cell penetrating peptide adsorption on magnetite and silica surfaces: a computaional investigation. J Phys Chem B 2015, 119, 8239-8246

Cell/SPIONs interaction via Lentivirus coupling

- Retrovirus (RNA)
- Peri-capside
- Used in cell trasduction as a vector

ñ

щ

5

4

200101-1/14

£

ŝ

001

in blue.

0

<u>_</u>

APUGEP ANM

WNP-SIO2

Conclusions

- The MNPs used in this study demonstrated to be cytocompatible in both static and dynamic conditions.
- SiO₂ and Ca ions increase colloidal stability of SPIONs but reduce interaction with membranes
- pAntp is adsorbed onto SPIONs but probably it is unable to improve cell interactions when SiO₂ shelled
- Lentivirus vector coupled with SPIONs increases gene expression in liver and <u>spleeen</u>

SUPSI

University of Applied Sciences of Southern Switzerland

Proff. Antonia Follenzi and Maria Prat Drs. Ester Borroni, Andrea Cochis, Francesca Oltolina

Prof. Enrica Vernè Drs. Sara Ferraris and Marta Miola

Dr. Sasa Novak

Prof. Andrea Danani Drs. Gianvito Grasso and Marco Deriu

Thanks To:

Compagnia di San Paolo

SUPSI University of Applied Sciences of Southern Switzerland

and all of You for the attention !!