
# Electrospun materials for bone tissue engineering

PhD. Erika Adomavičiūtė

Kaunas University of Technology, Faculty of Mechanical Engineering and Design, Department of Materials Science

## Welcome in the centre of Europe!





According to the French experts in cartography, the geographical centre of Europe is in Lithuania, close to Vilnius (capital of Lithuania).



# Lithuania in Europe





**Neighbouring states:** Latvia, Belarus, Poland, and Russia

#### Lithuania is a bridge

between East and West, North and South!

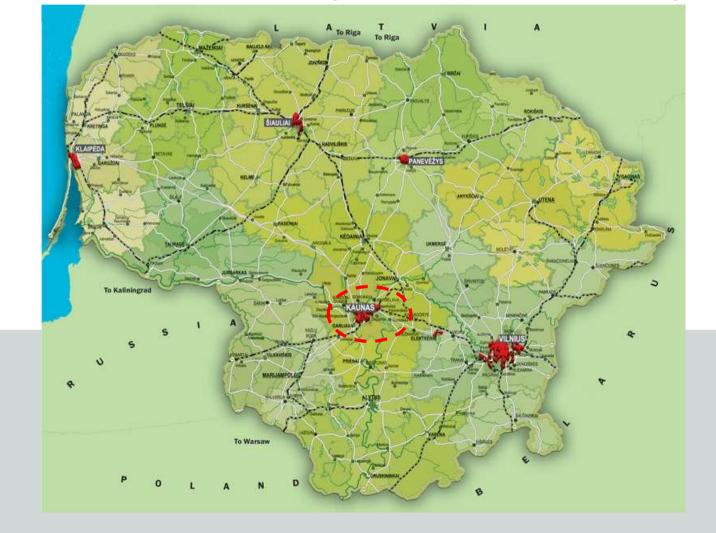
## **Basketball Second Religion**



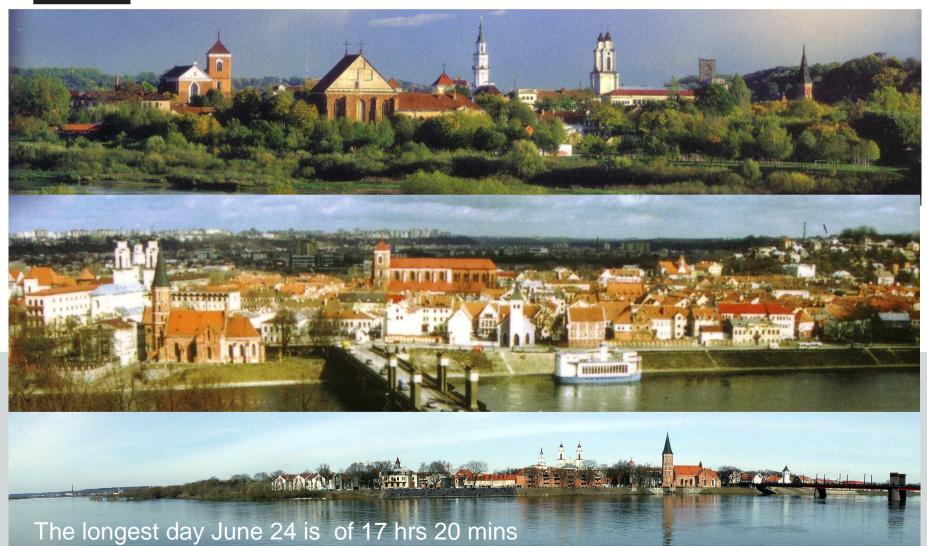


Lithuanian men's basketball team won silver medals won in the European Basketball Championship 2015.

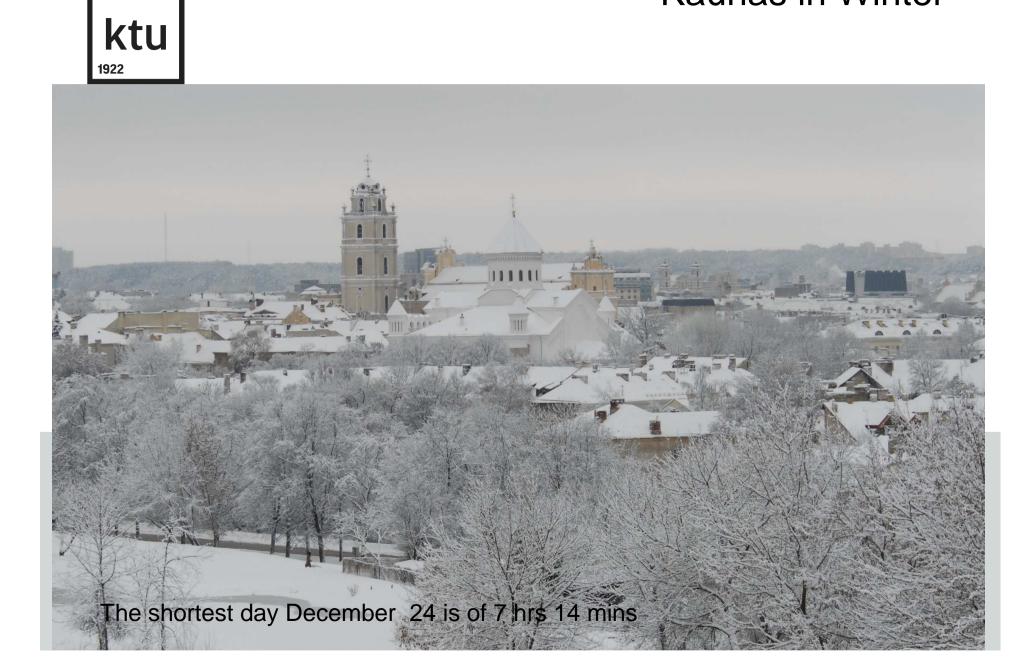




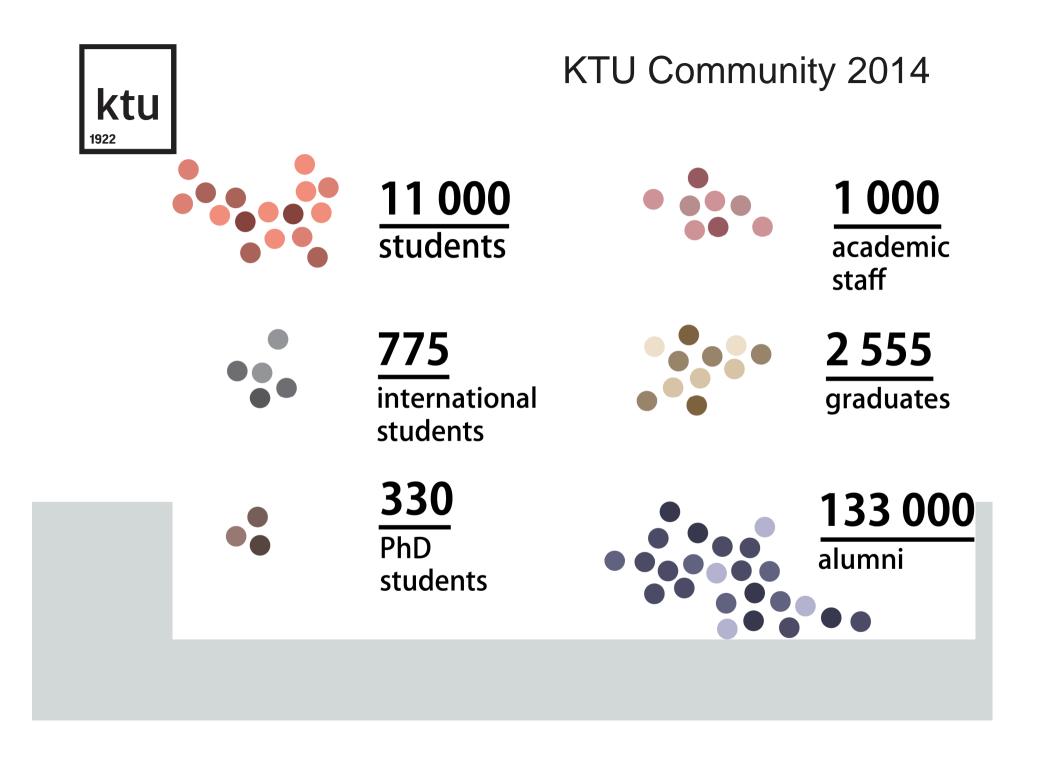




## Kaunas




#### **Population in Kaunas** ~ **309,000 people** (2013)





## Kaunas in Summer



## Kaunas in Winter

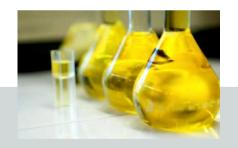




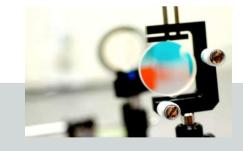


## **KTU Research AREAS**



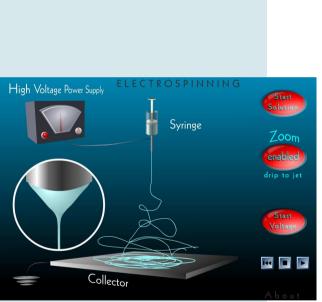

Diagnostic and measurement technologies




New materials for high-tech

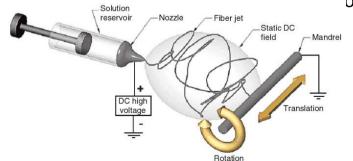


Smart environments and information technology




Technologies for sustainable development and energy




Sustainable growth and social-cultural development

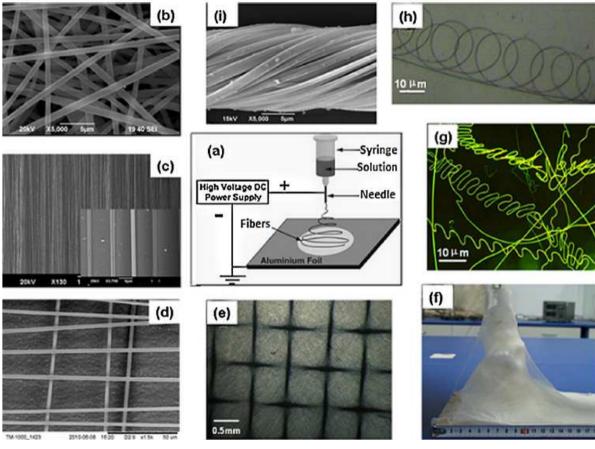
#### What it is electrospinning?



ktu

http://nano.mtu.edu/Electrospinning\_start.html




Electrospining is a fiber spinning process of generating ultrafine fibers in the nanometer to micrometer scale.

In electrospinning process an electric field is generated between an oppositely charged polymer fluid an a collection of electrode. In mostly cases a polymer solution is added to a glass syringe with capillary tip. An electrode is placed in the solution with another connection made to metal screen. As a power is increased, the charged polymer solution is attracted to scream. Once the voltage reaches a critical value the charge overcomes the surface tension of polymer cone formed on the capillarity tip of the syringe and a jet of ultrafine fibers is

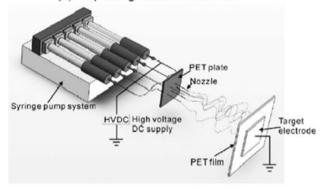
Oduced. [P.J. Brown and etc. Nanofibers and nanotechnology in textiles]

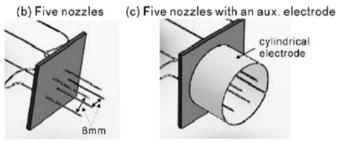


ktu 1922

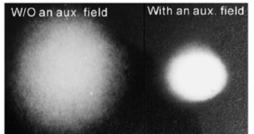


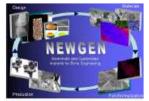
#### **Electrospun materials**


B. Sun with co-authors "Advances in three dimensional nanofibrous macrostructures via electrospinning" Progress in Polymer Science


#### Electrospinning equipments

Multiple spinnerets

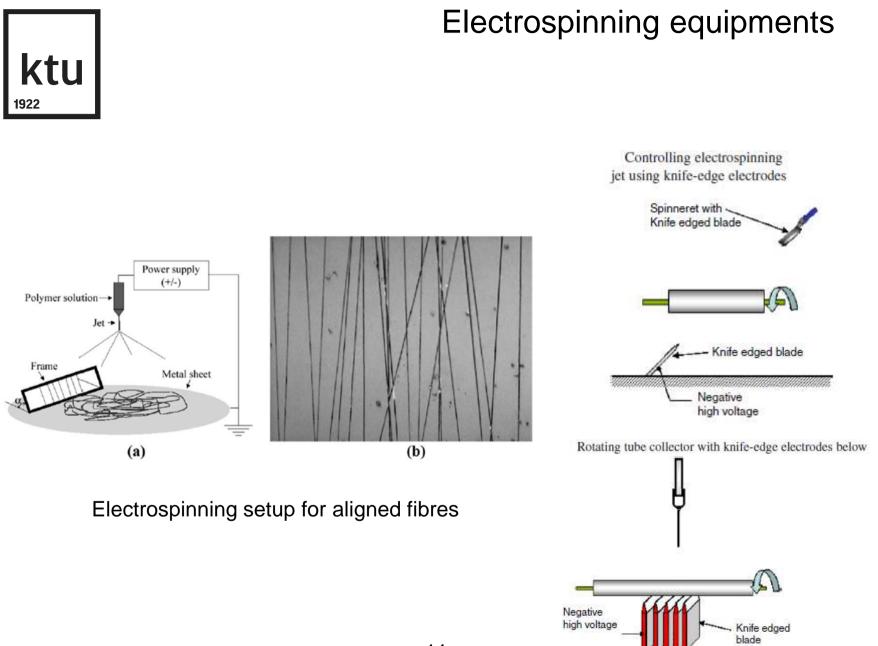

Electrospinning setup for mass production of electrospun nonwoven mats


(a) E-spinning with multi-nozzles



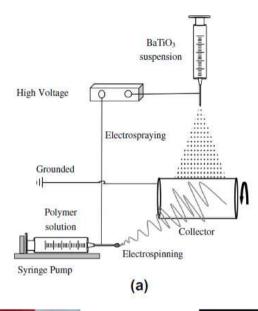


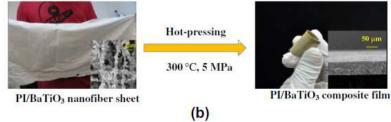
(d) Deposited areas for single nozzle





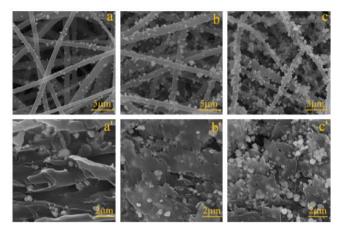

COST Action MP1301


INSTITUTE OF PHYSICS PUBLISHING Nanotechnology 17 (2006) R89–R106


20mm



INSTITUTE OF PHYSICS PUBLISHING

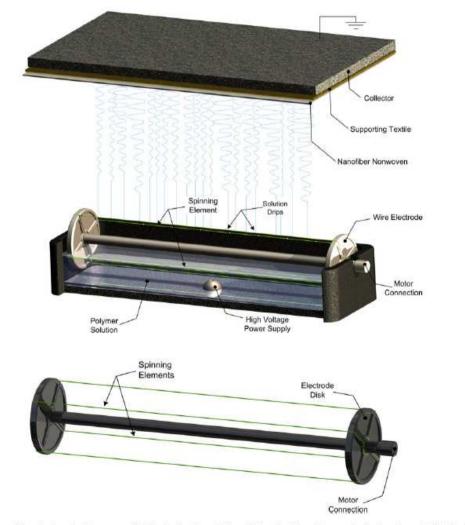

Nanotechnology 17 (2006) R89-R

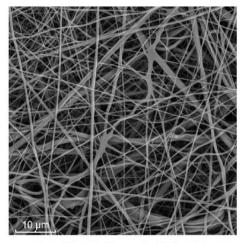




Electrospinning and electrospraying processes

#### Electrospinning equipments





The SEM images of PI/BaTiO<sub>3</sub> composite nanofibrous (a-c) and cross-section of the composites (a'-c') with BaTiO<sub>3</sub> content of 10 vol<sup>®</sup> (a), 30 vol<sup>®</sup> (b), 50 vol% (c).

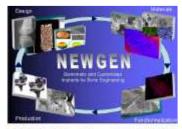
50 m



#### **Electrospinning equipments**






SEM image of the PUR nanofiber mat produced by electrospinning process.

Scheme of the electrospinning process (at the top) using rotating electrode with cotton cord spinning elements (at the bottom).

#### Why electrospinning in scaffold formation?

## *Tissue engineering scaffolds should have the following characteristics:*

- Porosity for cell migration;
- Balance between surface hydrophilicity and hydrophobicity for cell attachment;
- Mechanical properties comparable to natural tissue to withstand natural loading conditions;
- Degradation capability so that it gets completely reabsorbed after implantation;
- Nontoxic byproducts;
- 3D matrix [P.J. Brown and etc. Nanofibers and nanotechnology in textiles]



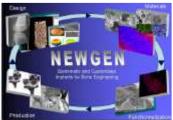
#### Why electrospinning in scaffold formation?

Electrospun nonwoven materials have unique characteristics:

- large specific surface area (up to 100 m 2/g);
- high porosity (up to 95%);
- diameter of fibers 10-1000 nm.

Due large surface area these materials is capable to absorbing fluids very efficiently; wide variety of size and shape of material may be electrospun.

By mimicking the size-scale of natural ECM components such as type I collagen, nanofibrous scaffolds provide an advantageous microenvironment that enhances cellular attachment, proliferation, and in some cases, promotes terminal differentiation of stem cells [J. Mater. Chem., 2010, 20, 8776–8788]

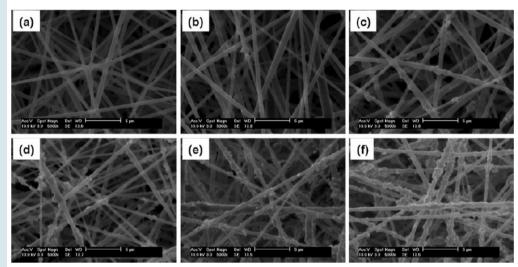





## Electrospun polymer for bone tissue engineering

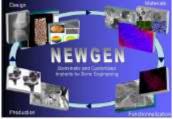
## Table 1. Summary of electrospun nano-microfibers system produced for the

| Composition            |                         | Fiber diameter     | Assays                                      | Remarks                                             |  |  |  |
|------------------------|-------------------------|--------------------|---------------------------------------------|-----------------------------------------------------|--|--|--|
| Synthetic polymers     | PLA (L- and DL-type)    | 141-2140 nm        | MC3T3-E1                                    | Effect of osteogenic factors and fiber size         |  |  |  |
|                        | PCL                     | 20-5000 nm         | BMSC, in vivo (rat)                         | Tissue engineering                                  |  |  |  |
|                        | PHB, PHBV, blend        | 2300-4000 nm       | SaOS-2 & L929                               |                                                     |  |  |  |
| Natural polymers       | Collagen I              | 50-1000 nm         | hMSC                                        |                                                     |  |  |  |
|                        | Chitosan                | 200 nm             | MG63, in vivo (rabbit)                      | Bone formation at 4 weeks                           |  |  |  |
|                        | Silk fibroin            | 217-610/183-810 nm | MC3T3-E1                                    |                                                     |  |  |  |
|                        | Silk fibroin            | 700 nm             | BMSC                                        | Poly(ethylene oxide) (PEO) addition                 |  |  |  |
| Polymer blends         | PCL-gelatin             | tens of nm-1000 nm | BMSC                                        | Cell penetration with gelatine addition             |  |  |  |
|                        | PLLA-gelatin            | 190-390 nm         | MC3T3-E1                                    | Enhanced cell responses on blends                   |  |  |  |
|                        | PCL-heparan sulfate     | -                  | BMSC                                        | Osteogenic differentiation                          |  |  |  |
| Inorganics             | Bioactive glass         | 84-630 nm          | Production, bone bioactivity, rBMSC         | Excellent bone bioactivity and BMSC response        |  |  |  |
|                        | Bioactive glass         | 320 nm             | Production, osteoblast adhesion             | FN-introduction, enhanced cell adhesion             |  |  |  |
|                        | Hydroxyapatite and      | 240-1550 nm        | Production, dissolution                     | Reduced dissolution by fluorine addition            |  |  |  |
|                        | fluoro-hydroxyapatite   |                    |                                             |                                                     |  |  |  |
|                        | Hydroxyapatite          | 10,000-50,000 nm   | Production                                  | Microfibers                                         |  |  |  |
|                        | Hydroxyapatite          | 200-500 nm         | Processing                                  |                                                     |  |  |  |
|                        | Silicate                | -                  | In vitro (MG63)                             | Apatite forming ability                             |  |  |  |
| Composites/hybrids     | Gelatin-hydroxyapatite  | 200-400 nm         | Production, osteoblasts                     | Enhanced osteoblastic differentiation               |  |  |  |
|                        | Collagen-hydroxyapatite | 75-160 nm          | Production, osteoblasts                     |                                                     |  |  |  |
|                        | Chitosan-hydroxyapatite | ~214 nm            | hFOB                                        | PEO addition                                        |  |  |  |
|                        | PCL-CaCO <sub>3</sub>   | 760-900 nm         | Mechanical test, in vitro (hFOB)            | GBR membrane application                            |  |  |  |
|                        | PLLA-hydroxyapatite     | ~1000-2000 nm      | Production, MG63                            | Surfactant introduction                             |  |  |  |
|                        | Siloxane-gelatin        | 40 to 670 nm       | Production, MC3T3-E1                        | Hybridized structure, Ca requirement                |  |  |  |
|                        | PCL-HA-collagen         | ~189-579 nm        | hFOB                                        |                                                     |  |  |  |
|                        | PCL-BTCP                | 200-2000 nm        | Osteoblast responses                        | Better cell adhesion due to BTCP                    |  |  |  |
| Surface functionalized | PCL                     | ~250 nm            | Production, osteoblasts, PDL<br>fibroblasts | Apatite mineralized, higher osteogenic<br>responses |  |  |  |
|                        | PLLA                    | 200-2200 nm        | Production                                  | NaOH-treatment                                      |  |  |  |
|                        | PDLLA                   | -                  | Production                                  | Ca(NO <sub>3</sub> ) <sub>2</sub> addition          |  |  |  |
|                        | PLLA, PLLA-collagen     | 287-364 nm         | hFOB                                        | Mineralization with collagen                        |  |  |  |
|                        | PLGA, PLGA-PEG          | -                  | Fibroblast adhesion                         | Amination, RGD-immobilization                       |  |  |  |
| Drug/gene delivery     | PLA, PCL                | 120 C              | Antibacterial effects                       | Antibiotic delivery                                 |  |  |  |
|                        |                         |                    | 19                                          |                                                     |  |  |  |






# Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering

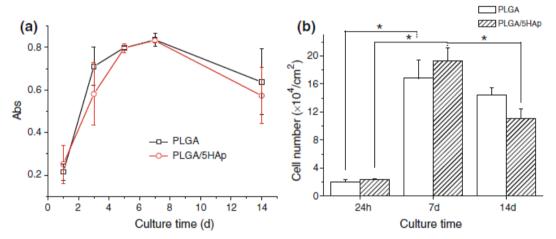

Lihong Lao, Yingjun Wang, Yang Zhu, Yuying Zhang & Changyou Gao

> J Mater Sci: Mater Med (2011) 22:1873–1884 DOI 10.1007/s10856-011-4374-8



SEM images a) PLGA; b) PLGA/0,5 Hap; c) PLGA/2.5 Hap; d) PLGA/5 Hap; e) PLGA/10HAp and f) PLGA/15HAp nanofibrous scaffolds J Mater Sci: Mater Med (2011) 22:1873–1884

DOI 10.1007/s10856-011-4374-8






#### Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering

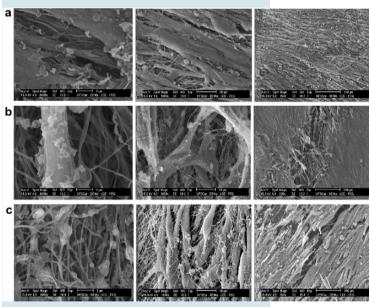
Lihong Lao, Yingjun Wang, Yang Zhu, Yuying Zhang & Changyou Gao

> J Mater Sci: Mater Med (2011) 22:1873–1884 DOI 10.1007/s10856-011-4374-8

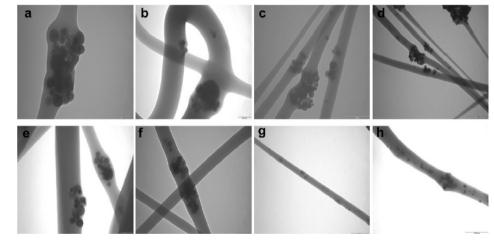


a) Viability, b) proliferation of MC3T3-E1 osteoblasts on the control PLGA and PLGA/5HAp nanofibrous scaffolds

PLGA 


ALP activity\* of MC3T3-E1 osteoblast seeded on the control PLGA and PLGA/5HAp nanofibrous scaffolds after 5,7 and 14 days culture.

**ALP activity\*** is an enzyme secreted by osteoblasts and acts as one of the markers to confirm the osteoblastics phenotype and mineralization

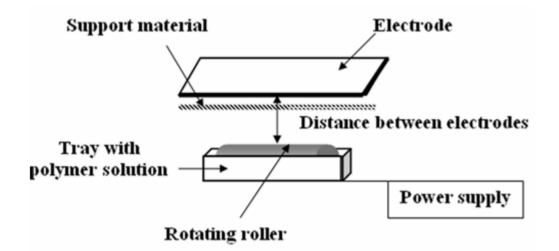



#### Influence of the microstructure and mechanical strength of nanofibers of biodegradable polymers with hydroxyapatite in stem cells growth. Electrospinning, characterization and cell viability

Wilson A. Ribeiro Neto, Ildeu H.L. Pereira, Eliane Ayres, Ana C.C. de Paula, Luc Averous, Alfredo M. Góes, Rodrigo L. Oréfice, Rosario Elida Suman Bretas Polymer Degradation and Stability 97 (2012) 2037e2051



h-ASC after 5 days in substrates of nanofibers of: (a) PLA 7%; (b) PLA-nHA 1%; (c) PLA-nHA 5%. Polymer Degradation and Stability 97 (2012) 2037e2051




TEM micrographs of the nanofibers of: (a),(b) PLA-nHA 1%; (c),(d) PLA-nHA 5%; (e),(f) PCL-nHA 1%; (g),(h) PCL-nHA 5% Polymer Degradation and Stability 97 (2012) 2037e2051

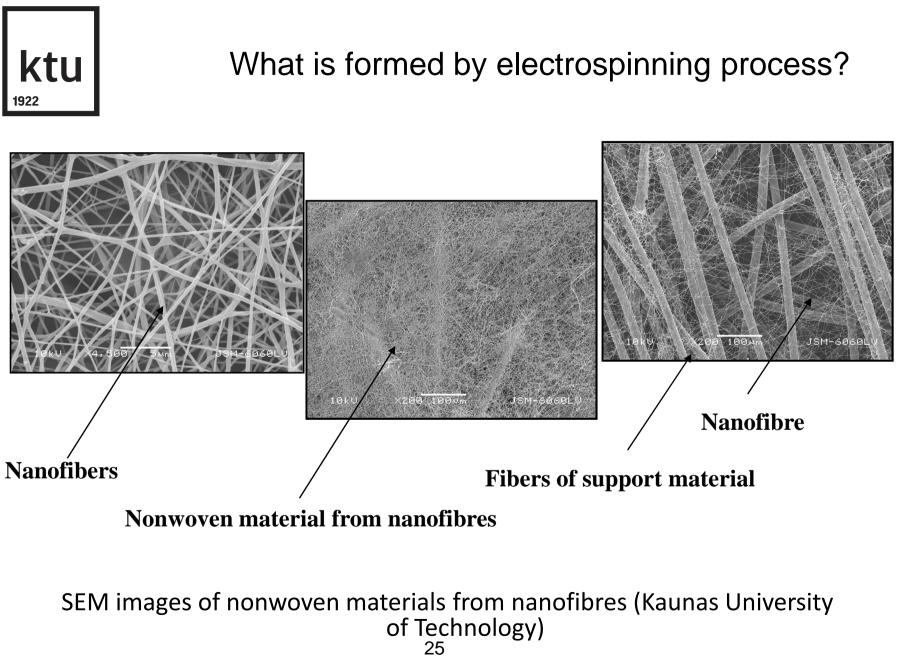




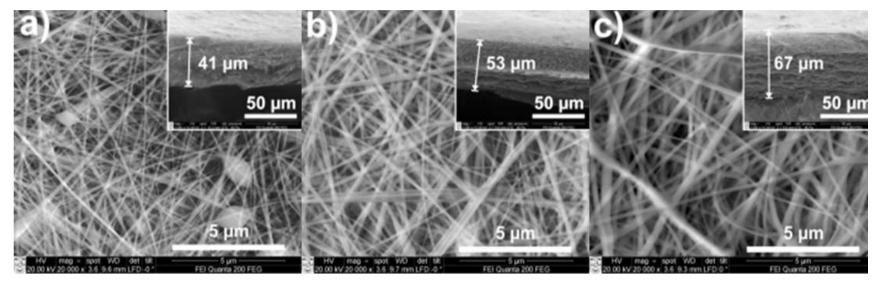
### Electrospinning equipment in Kaunas University of Technology








NANOSPIDER<sup>™</sup> (Elmarco)




Electrospinning equipment in Kaunas University of Technology





#### What is formed by electrospinning process?



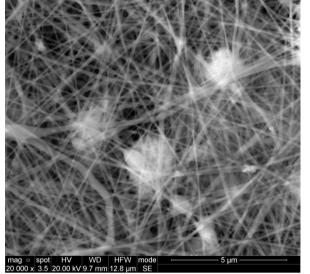
The SEM images of electrospun PVA mat structure (scale bar 5  $\mu$ m) deposited from different PVA concentration solutions (also different resulting viscosities): a) 11 wt.%, b) 13 wt.%, c) 15 wt.%. The inset demonstrates SEM images of electrospun mats cross-sections, arrows indicate thickness (scale bar 50  $\mu$ m). Average of thickness a) 41.3±1.6  $\mu$ m, b) 53.3±3.4  $\mu$ m, c) 66.7±1.3  $\mu$ m [E. Adomavičiūtė. T. Tamulevičius, L. Šimtonis and et.c Materials Science, 2015, No 1]

### MATERIALS, METHODS

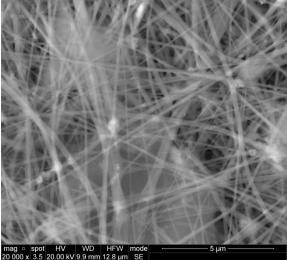
#### MATERIALS

POLY(VINYL ALCOHOL) (PVA) Sigma Aldrich Mowiol 10-98 Mw – 61000 HYDROXYAPATITE (Hap) Sigma Aldrich

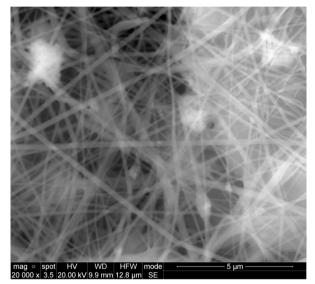
By magneting stirring for 4 hours at 80 °C was prepared PVA solution with concentration 13%. In PVA solution was added 1,5 %, 3% and 5% amount of Hap powder.


#### **METHODS**

Electrospinning equipment Nanospider TM (Elmarco). Applied voltage 70 kV, distance between electrodes 13 cm.


The structure of electrospun materials estimated by SEM Quanta 200 FEG .

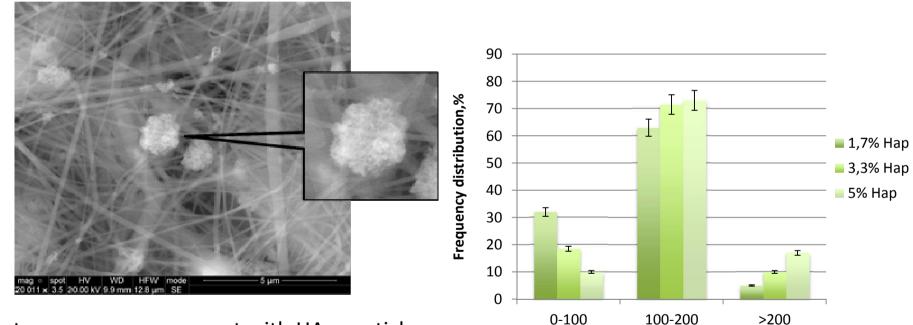



The structure of electrospun nonwoven materials with HAp particles



PVA with 1,7% amount HAp




PVA with 5% amount HAp <sup>28</sup>



PVA with 3,3% amount HAp

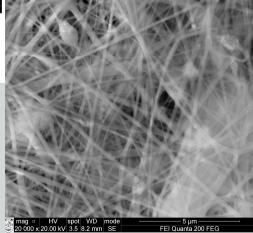



# The structure of electrospun nonwoven materials with HAp particles

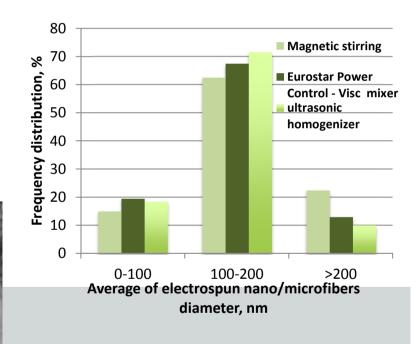


Electrospun nonwoven mat with HAp particles

Diameter of PVA with HAp electrospun fibers , nm





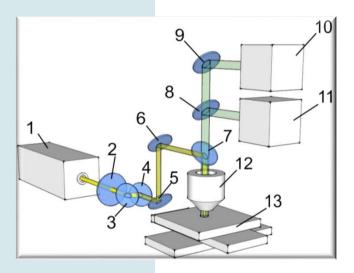


#### Electrospun materials with HAp particles



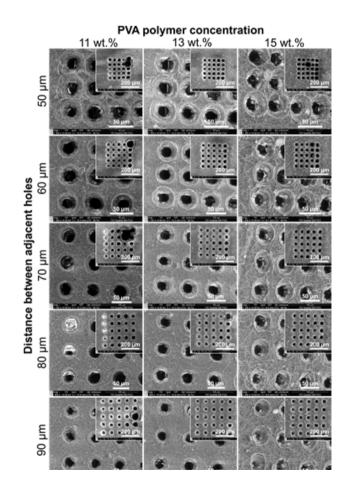
SEM image of electrospun PVA mat with 5% HAp (polymer solution was mixed 1 hour by mixer)



SEM image of electrospun PVA mat with 5% HAp (polymer solution was mixed 2 min by ultrasonic homogenizer)





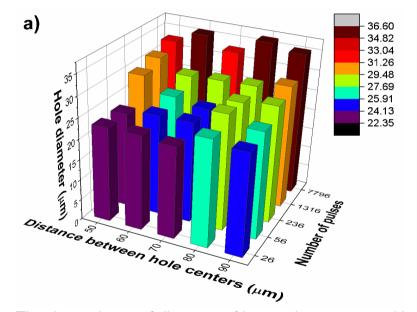




Disadvantage of electrospun nonwoven mats for scaffolds preparation is too small pore size

Designed pore networks can be created in electrospun scaffolds via laser ablation.



Principal scheme of ultrafast laser micro structuring system FemtoLab. 1 – femtosecond laser Pharos,  $2 - \lambda/2$  wave plate, 3,4 – Brewster angle polarisers (2, 3, 4 - attenuator), 5, 6, 7, 8, 9 – dichroic mirrors, 10 – CCD camera, 11 – LED illumination, 12 – objective, 13 – XYZ stage





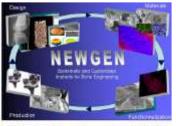

## Microstructuring of Electrospun Mats Employing Femtosecond Laser

**Table 2.** Average hole diameters with one standarddeviation indicated in brackets of the laser processedelectrospun mats obtained from the SEM images

| PVA                        | Number of pulses | Average hole diameter (μm)                       |               |               |               |               |  |
|----------------------------|------------------|--------------------------------------------------|---------------|---------------|---------------|---------------|--|
| concentration,<br>C (w/w%) |                  | Distance between the adjacent points ( $\mu m$ ) |               |               |               |               |  |
|                            |                  | 50                                               | 60            | 70            | 80            | 90            |  |
|                            | 26               | 23.1<br>(1.0)                                    | 23.1<br>(2.4) | 22.4<br>(1.3) | 26.1<br>(1.3) | 25.0<br>(2.0) |  |
|                            | 56               | 23.2<br>(2.6)                                    | 24.5<br>(3.8) | 24.6<br>(1.3) | 28.4<br>(1.1) | 26.2<br>(2.7) |  |
| 13                         | 236              | 29.6<br>(2.4)                                    | 26.0<br>(2.2) | 24.6<br>(1.9) | 27.9<br>(1.1) | 28.8<br>(1.6) |  |
|                            | 1316             | 31.2<br>(2.7)                                    | 28.2<br>(2.5) | 28.6<br>(2.0) | 28.9<br>(1.8) | 30.4<br>(1.4) |  |
|                            | 7796             | 32.8<br>(2.4)                                    | 35.7<br>(2.3) | 32.8<br>(2.0) | 36.6<br>(8.0) | 35.2<br>(2.1) |  |
|                            | 26               | 27.2<br>(3.3)                                    | 26.9<br>(1.9) | 28.5<br>(0.9) | 27.2<br>(3.2) | 24.3<br>(2.6) |  |
|                            | 56               | 27.5<br>(1.9)                                    | 28.4<br>(2.8) | 29.7<br>(1.7) | 28.6<br>(1.6) | 27.3<br>(2.1) |  |
| 15                         | 236              | 31.9<br>(3.5)                                    | 29.3<br>(2.6) | 32.3<br>(3.4) | 25.6<br>(1.7) | 26.4<br>(2.9) |  |
|                            | 1316             | 29.9<br>(1.9)                                    | 34.1<br>(7.0) | 32.7<br>(2.8) | 30.4<br>(1.9) | 31.8<br>(2.6) |  |
|                            | 7796             | 35.4<br>(2.6)                                    | 36.6<br>(2.7) | 33.8<br>(0.5) | 31.7<br>(1.9) | 33.8<br>(2.4) |  |
|                            |                  |                                                  |               |               |               |               |  |



The dependence of diameter of laser micro-structured holes upon applied number of pulses and distances between the adjacent holes for mats electrospun from 13% concentration of PVA solutions


#### Electrospinning for bone tissue engineering

#### Conclusions

✤ The structure of electrospun materials due a large surface area-to-volume ratio and due similarity to native ECM make this materials ideal candidates for scaffolds formation.

✤ The structure of electrospun materials depends from technological parameters and polymer solution properties: polymer type; solvent time; viscosity, electric conductivity, and additional particles insertion way.

✤ In order to get smaller HAp particles with more uniform distribution in nonwoven mat is better to use ultrasonic homogenizator.



#### Electrospinning for bone tissue engineering

#### **Conclusions**

From electrospun polymer solution with higher amount of HAp particles a mat with thicker nano-microfibers is formed.

The electrospun amount of Hap particles in polymer solution depends from concentration (viscosity) of electrospun solution.

Increase diameter of pores in electrospun nonwoven materials is possible by employing femtosecond laser.





# Thank YOU for attention! mag Big HV spot WD mode 20 003 x 20 00 kV 3.5 8.2 mm SE 5 µm FEL Quanta 200 FEG