HISTOCELL

GENERAL PRESENTATION

- ✓ Complete denomination: Histocell S.L.
- ✓ Location (city, country):
- ✓ Director: Dr. Julio Font
- ✓ Contact person in NEWGEN: Dr. Begoña Castro
- ✓ Working Group involvement: WG 1, WG3 & WG4
- ✓ **Staff**: 24 staff, (12 of them PhD), fully dedicated to research and manufacturing activities.

Derio, Spain

✓ **Research topics**: Bone regeneration, Advanced wound healing, Inflammatory diseases, Neuroregeneration, Ischemia and Lung therapy.

 Researchers expertises: Development of new methods and technologies to apply them in regenerative medicine, and uses Adult Mesenchymal Stem Cells (AMSCs) and Bioactive materials (scaffolds) as key technology.

<u>Histocell</u> Parque Tecnológico de Bizkaia 48160, Derio - SPAIN

BIOMATERIALS/NEWGEN TOPICS

SYNTHETIC BONE SUBSTITUTE FOR OSSEOUS REGENERATION

Description: Resorbable cylinder-shaped matrixes composed of monetite featuring a combined micro/macroporous structure

Target: To be directly implanted into bone defects caused mainly by traumatic injuries, pseudoarthrosis, tumor resection surgery or osteomyelitis

MA: Conducts a guided bone remodelling process. Enables ostheosynthesis and angiogenesis. New tissue formation occurs parallel to absorption

IP status: PCT/ES2009000358 (2009)/Patent granted in Mexico Development: *Preclinical studies ongoing*

HISTOCELL

BIOMATERIALS/NEWGEN TOPICS

BONE REGENERATION

Product: Autologous adipose tissue derived MSCs grown in an in house developed, engineered bone substitute with optimal bone remodeling properties

Target: Severe bone defects caused by pseudoarthrosis, surgery or traumatic injuries

Innovation: Regenerative capabilities of cells are supported by the use of a bone-like scaffold made of a biocompatible calcium phosphate derivate. The scaffold's nature enables a directed osseous remodeling process for an optimal integration of the newly formed tissue with the surrounding bone and ensures its adequate revascularization

Development stage: Preclinical phase completed successfully. Phase I trial scheduled for early 2015

Status: Licensing & codevelopment agreement with Salvat

FACILITIES

R&D Area

567 m2 working area composed by completely equipped offices and laboratories: Molecular Biology Laboratory, Cell Culture Laboratory, Cytofluorometry, Spectrophotometry, Histology Immunomarking...

FACILITIES

GMP Manufacturing facility

65 m2 authorized clean room

GMP compliance certification from the Spanish drug and medical device agency (AEMPS) for the manufacturing of clinical grade Mesenchymal Stem Cells and Chondrocytes.

