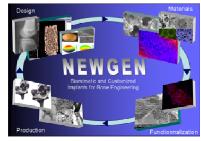
MPL – RBI

GENERAL PRESENTATION

Complete denomination: Molecular Physics Laboratory (MPL), Division of Materials Physics, Ruđer Bošković Institute (RBI) and collaborating partners

>Location (city, country): Zagreb, Croatia

- Director: Tomo Antičić
- Contact person in NEWGEN: Andreja Gajović
- Working Group involvment: WG2


Staff: 3 senior scientists, 3 research associetes/assistant prof., 1 research assistant, 4 PhD students

Research topics: bioactive ZrO₂ based ceramics (syntheses and structural characterization), interaction of CaP coatings with substrates (structural characterization), bioactive glasses (surface activity of electrically polarised bioglasses), dental materials (electrical and dielectric properties)

Researchers expertises: Raman spectroscopy (*in situ*, micro/macro), TEM (collab with IJS), impendence spectroscopy

<u>MPL – RBI</u> Ruđer Bošković Instiute Bijenička 54 HR-10002, Zagreb - CROATIA

MPL – RBI

GENERAL PRESENTATION

COMPETENCES OF THE GROUP

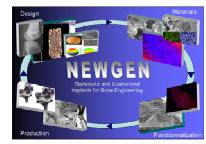
Characterization:

• ADVANCED:

- *in situ* thermo micro-Raman spectroscopy (RS)
- Impedance spectroscopy (IS)
- TEM methods collaboration with IJS (Ljubljana)

• BASIC:

- -X-ray powder diffraction
- -scanning electron microscopy
- dynamic light scattering (sizes in range 0.6-6000 nm and ξ potential)

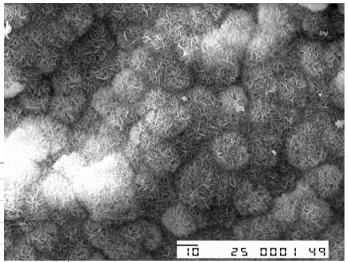

Syntheses of ceramics:

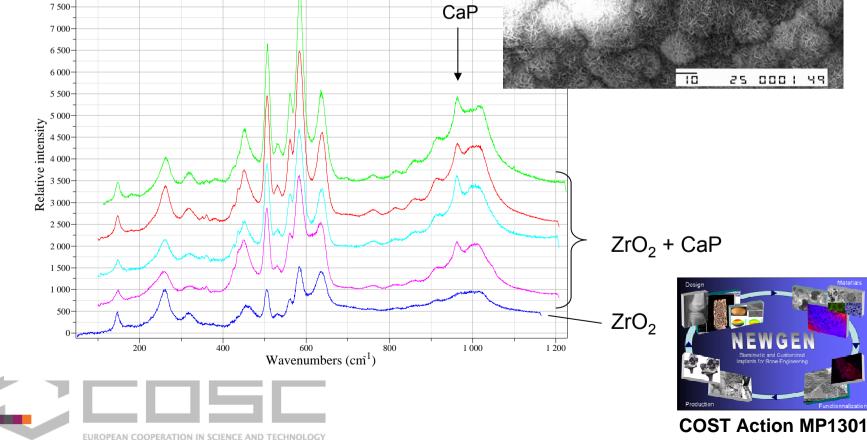
- SOLID STATE:
 - mechanochemistry
 - sintering

• WET CHEMISTRY:

- hydrothermal methods
- anodization
- sol-gel syntheses

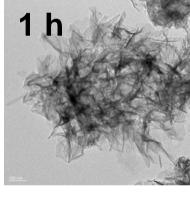
<u>MPL – RBI</u> Ruđer Bošković Instiute Bijenička 54 HR-10002, Zagreb CROATIA

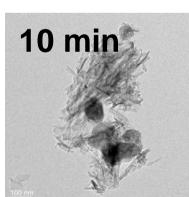

MPL – IRB

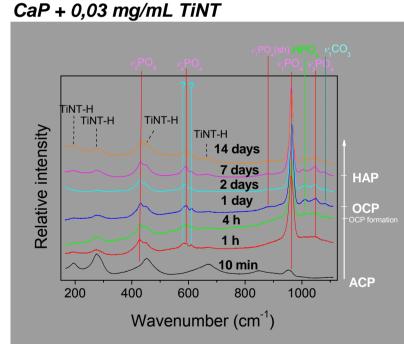

BIOMATERIALS/NEWGEN TOPIC 1

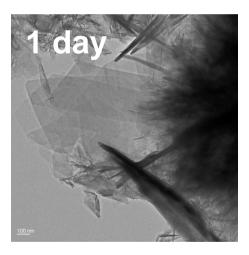
Stabilized ZrO₂ ceramic with CaP coating

Materials: sol-gel or mechanochemical syntheses of ZrO₂ powder + sintering Methods: Raman spectroscopy and SEM




MPL – IRB


BIOMATERIALS/NEWGEN TOPIC 2




Influence of the titanate ($H_2Ti_3O_7$) nanotubes (TiNT) on the CaP phase formation The difference in the Raman spectra of amorphous calcium phosphate (ACP), octacalcium phosphate (OCP) and hydroxy apatites (HAP) \rightarrow shift in the bands' maxima and the decrease of the bands' broadness (FWHM). Materials: hydrothermal syntheses of TiNT, biomimetic CaP

COST Action MP1301

Methods: Raman spectroscopy and TEM

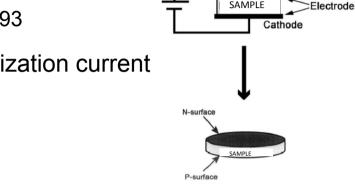
EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

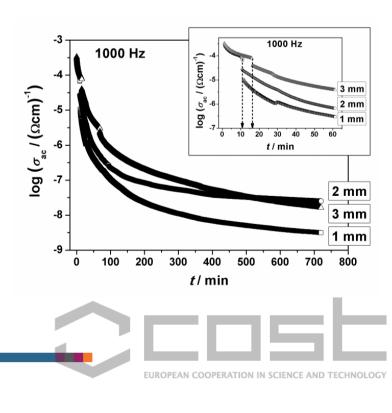
Materials: commercial bioactive glasses 45S5, 13-93

Method: thermally stimulated polarization/depolarization current

Topic 3: Electrical polarization of bioactive glasses

 Influence of surface charges induced by electrical polarization on bioactivity


Topic 4: Characterization of the setting process and aging of dental materials


Materials: glass ionomer cements, dental resins

Method: Impedance spectroscopy study of electrical/dielectric properties of dental materials

COST Action MP1301

BIOMATERIALS/NEWGEN TOPICS

Anode

SAMPLE

IRB

MPL – IRB

FACILITIES

Advanced Raman spectroscopy technique

514.5 or 532 nm excitation

- triple monocromator, CCD camera
- confocal micro-Raman stage and macro-Raman stage

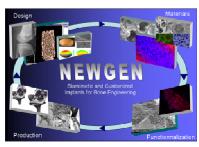
FUROPEAN COOPERATION IN SCIENCE AND TECHNOLOG

Temperature dependent *in situ* measurements, 10 K – 1700 K:

- He-cycle cryostat: 10 K 350K (macro stage)
- "Linkam" 77 K 800 K (micro stage)
- "Leitz" heating stage: 500 1700 K (micro stage)

Portable Raman spectroscopy technique

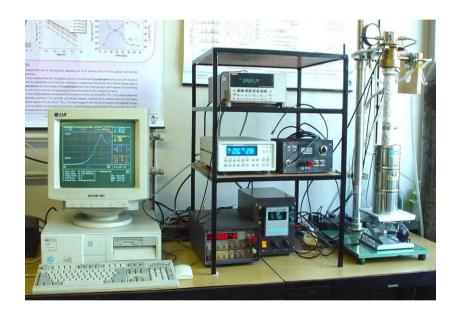
Florescence problem in the organic materials is solved by SERDS


	Fluorescence
Laser	Raman
Spectrum 1 Spectrum 2	
Raman differen spectrum	

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

FACILITIES

Lasers'power	0 - 0.5 W
Laser 1	784.3 nm
Laser 2	785.2 nm



Impedance spectroscopy (IS) -Impedance analyzer (Novocontrol-Alpha N) with high-temperature sample cell:


- frequency range: 1 mHz 4 MHz,
- temperature range: -100°C- 1100°C

Electrical measurements

Setup for measuring thermally stimulated polarization/depolari zation current (TSPC/TSDC)

