„CeraPore“ –
Structural surface modification of dense load-bearing ZTA

Norbert Schneider
Content

- Background
- Coating and sintering process
- Surface properties
- Mechanical properties
- Cellbiological / Clinical results
- Regulatory aspects
- General project risks
Background

- high wall thickness of the system
- risk of surgical error when seating ceramic insert
- risk of aseptic loosening due to metal ions
intelligent composite materials

nacre

bone

Damascene-steel

BIOLOX® delta

www.larimar.de

www.digitalefolien.de

Dr. N. Schneider
slide 3
Nantes, 08.05.2014
nacre

composite-Werkstoff:
- 95% aragonite
- 5% proteins & chitin

Young’s modulus:
- up to 80 GPa

fracture toughness:
- 1 - 8 MPa m$^{1/2}$
Bone

- **Composite material:**
 - 70% hydroxyapatite & calciumphosphate
 - 20% collagen & proteoglycane
 - 10% water

- **Young's modulus:**
 - Appr. 30 GPa

- **Fracture toughness:**
 - 2 – 12 MPa m$^{1/2}$
Damascene steel

- **Composite Material:**
 - 50% low-C steel
 - 50% rich-C- or P steel

- **Young’s Modulus:**
 - 210 GPa

- **Fracture Toughness:**
 - 50 MPa m$^{1/2}$
BIOLOX® delta

composite-material:
- 80% Al₂O₃
- 17% ZrO₂
- 3% toughening platelets

Young’s modulus:
- 360 GPa

fracture toughness:
- 6.5 MPa m¹/²
Transformation toughening of ZrO$_2$

tetragonal:
$\rho = 6.10 \text{ g/cm}^3$

monoclinic:
$\rho = 5.85 \text{ g/cm}^3$

1170 °C < T

increase of volume

4 %

T < 1170 °C
Toughening mechanisms in BIOLOX® delta
3-point-bending strength
Microstructure of BIOLOX® ceramics

BIOLOX®forte

- 99.8 Vol.% Al$_2$O$_3$ + 0.2 Vol.% other oxides

BIOLOX®delta

- 80 Vol.% Al$_2$O$_3$ + 17 Vol.% ZrO$_2$ + 3 Vol.% other oxides
Material properties of BIOLOX®-ceramics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>BIOLOX®forte Mean value</th>
<th>BIOLOX®delta Mean value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃ Vol.%</td>
<td>99,8</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>ZrO₂ Vol.%</td>
<td>n.a.</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>mean grain size µm</td>
<td>1,75</td>
<td></td>
<td>0,56</td>
</tr>
<tr>
<td>4-point-bending-strength MPa</td>
<td>631</td>
<td></td>
<td>1384</td>
</tr>
<tr>
<td>Young’s modulus GPa</td>
<td>407</td>
<td></td>
<td>358</td>
</tr>
<tr>
<td>frac. toughn. KᵢC MPa m¹/²</td>
<td>3,2</td>
<td></td>
<td>6,5</td>
</tr>
</tbody>
</table>
Aim of the project

- Development of a porous ceramic coating based on BIOLOX®delta for all-ceramic joint replacement

- Reduced wall thickness (3 mm) → lower outer diameter

- Improved functionality → combination of superior tribological properties of ceramics and direct osseointegration

- Monolithical system → simplified implantation, avoiding surgical errors
Content

- Background
- **Coating and sintering process**
- Surface properties
- Mechanical properties
- Cellbiological / Clinical results
- Regulatory aspects
- General project risks
Coating process

spraying of ceramic slurry

green body

semi-automated process
Coating process

spraying of pore forming agent

- pore forming agent: organic material
- pore forming agent is completely removed during sintering process
thermical removing of pore forming agent

properties of coating depend on sintering temperature, pressure and sintering time
Surface treatment after sintering

- removing mechanically unstable parts of the coating
- pore opening

blasting process

finished coating surface

0.5 mm
Coating process is bench-scale unit
Content

- Background
- Coating and sintering process
- **Surface properties**
- Mechanical properties
- Cellbiological / Clinical results
- Regulatory aspects
- General project risks
Characterization: optical microscope / SEM

- surface porosity: app. 47%
- pore size (diameter): 200 – 500 µm
- hemispherical pores
- surface enlargement by factor 2 to 3

highly reproducible surface structure
Characterization: Laser-scanning-microscope

roughness: \(R_z = 435 \, \mu m \)
Content

- Background
- Coating and sintering process
- Surface properties
- **Mechanical properties**
- Cellbiological / Clinical results
- Regulatory aspects
- General project risks
Characterization: compression strength

Test machine limit = 19 kN

→ weight equivalent 1,9 t
→ steel bolts were deformed
→ no damage occurred at the coating
Characterization: shear strength

- **Shear strength**: 25 mm
- **Acceptance criterion of ASTM F1044-05**

- **No delamination of the coating**

Dr. N. Schneider
slide 26
Nantes, 08.05.2014
Characterization: adhesive strength

![Graph showing adhesive strength](image)

Characterization

- Steel bolt
- Substrate
- Coating (FM1000)

![Images of samples](image)

Teil 1 Teil 2 Teil 3 Teil 4 Teil 5

Dr. N. Schneider
slide 27
Nantes, 08.05.2014
Characterization: biaxial bending strength

- 36 %
- 31 %

Flexural strength [MPa]

n = 15
uncoated reference
coated samples with pore forming agent
coated samples without pore forming agent

Dr. N. Schneider
slide 28
Nantes, 08.05.2014
Analysis of fracture origin

Fracture origin

substrate
coating
pore
Requirements:

→ Testing geometry hip joint cup
→ bearing couple 40 mm diameter
→ wall thickness as small as possible

(minimized space requirement)

Cup-Design relates to:

→ range of motion
→ luxation stability
→ mechanical stability
→ production process
In-vivo like burst-test without backside support

Stress-analysis
(Finite Element Methode)

Burst-Test axial

Test Setup

Burst-Test 45°
according
„upright standing“
Acceptance criteria for regular ceramic inserts in metal shells:

- **Burst-test axial**
 - Mean value: 150 kN
 - Std. dev.: 40 kN
 - n = 7

- **Burst-test 45°**
 - Mean value: 118 kN
 - Std. dev.: 14 kN
 - n = 7
Content

- Background
- Coating and sintering process
- Surface properties
- Mechanical properties
- **Cellbiological / Animal study results**
- Regulatory aspects
- General project risks
Osseointegration in biological study

Schreiner, Schulze, Schwarz et al., ZOrthopUnfall 2011

52 weeks after implantation
Osseointegration in biological study

Masson-Goldner stain

Schreiner, Schulze, Schwarz et al., ZOrthopUmfall 2011

near-rim area 1 near-rim area 1
area of pole 2

Dr. N. Schneider
slide 35
Nantes, 08.05.2014
Osseointegration in biological study

Schreiner, Schulze, Schwarz et al., ZOrthopUnfall 2011

Dr. N. Schneider
slide 36
Nantes, 08.05.2014
Cell-tests (humane osteoblasts) of different pore size distributions

<table>
<thead>
<tr>
<th>Pore size (diameter) [µm]</th>
<th>Proliferation after 24 h (n=14)</th>
<th>Proliferation after 96 h (n=14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>750-660 A</td>
<td>57</td>
<td>103</td>
</tr>
<tr>
<td>660-590 B</td>
<td>54</td>
<td>127</td>
</tr>
<tr>
<td>590-350 C</td>
<td>34</td>
<td>141</td>
</tr>
<tr>
<td>350-200 D</td>
<td>64</td>
<td>134</td>
</tr>
<tr>
<td>no pores Ref</td>
<td>57</td>
<td>118</td>
</tr>
</tbody>
</table>

Cell culture on synthetics (reference) 96 h

Dr. N. Schneider
slide 37
Nantes, 08.05.2014
Test of osseointegration

+ Hydroxyapatite, \(\text{Ca}_5[\text{OH(PO}_4)_3] \)
 - inorganic part of bone
 - no development of connective tissue

+ Plasma-activation
 - decrease of contact angle (↓)
 - increase of surface energy (↑), leads to higher adhesion of bone cells
 - reaction gas: oxygen
 - durability: 4 days (reversible reaction)

+ RGD-Peptides
 - protein of extracellular matrix
 - adhesion of cells using Integrin-coupling
 - mechanically stable cell network

not activated

with O\(_2\)-Plasma activated

Dr. N. Schneider
slide 38
Nantes, 08.05.2014
Osseointegration in biological study (sheep)

8 mm

11 mm

4 implants per leg

Bulk material (pink)

Coating (pink)

Bone (green)

Dr. N. Schneider
slide 39
Nantes, 08.05.2014
Osseointegration in biological study (sheep)
Biological study – comp. to literature

Biological studies with Ti-samples

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5</td>
<td>2.5</td>
<td>3.5</td>
<td>4.5</td>
<td>5.5</td>
<td>6.5</td>
<td>16</td>
</tr>
</tbody>
</table>

fatigue-test:
cementing on Sawbone® using Palacos®R,
1.5 million cycles, 5 Hz
with flexion angles of 8°, 15° and 110°
highest load 2.6 kN
lowest load 168 N
outer/inner rotation between -1.9° and +5.7°
Cement compatibility

Post-fatigue pull-off test:
way-controlled, 5 mm/min
Coating process is reproducible

Alumina-Zirconia-ceramics are biocompatible materials

Porous coating leads to bone ingrowth ⇒ shear strength of bone and implant is comparable with Titanium implants

Coating is fully bonded to substrate during sintering ⇒ very good mechanical testing results ⇒ acceptance criteria of FDA passed!
This document is intended exclusively for experts in the field and is expressly not for the information of laypersons. The information on the products and / or procedures contained in this document is of a general nature and does not represent medical advice or recommendations. Since this information does not constitute any diagnostic or therapeutic statement with regard to any individual medical case, individual examination and advising of the respective patient are absolutely necessary and are not replaced by this document in whole or in part. The information contained in this document was gathered and compiled by medical experts and qualified CeramTec employees to the best of their knowledge. The greatest care was taken to ensure the accuracy and ease of understanding of the information used and presented. CeramTec does not assume any liability, however, for the up-to-dateness, accuracy, completeness or quality of the information and excludes any liability for tangible or intangible losses that may be caused by the use of this information.

In the event that this document could be construed as an offer at any time, such offer shall not be binding in any event and shall require subsequent confirmation in writing.