

"CeraPore" – Structural surface modification of dense load-bearing ZTA

Norbert Schneider

Content

Background

BIOLOX[®]

inside

- Coating and sintering process
- Surface properties
- Mechanical properties
- Cellbiological / Clinical results
- Regulatory aspects
- General project risks

Dr. N. Schneider slide 1 Nantes, 08.05.2014

Background

Trilogy® IT Acetabular System by Zimmer

modular system

metal shell with osseointegrative coating (ingrowth of bone) ceramic insert excellent tribological performance

high wall thickness of the system
 risk of surgical error when seating ceramic insert
 risk of aseptic loosening due to metal ions

Dr. N. Schneider slide 2 Nantes, 08.05.2014

intelligent composite materials

nacre

Damascene-steel

Dr. N. Schneider slide 3 Nantes, 08.05.2014 bone

BIOLOX[®] delta

nacre

BIOLOX®

inside

composite-Werkstoff: 95 % aragonite 5 % proteins & chitin

Young's modulus: up to 80 GPa

fracture toughness: 1 - 8 MPa m^{1/2}

Dr. N. Schneider slide 4 Nantes, 08.05.2014 bone

bone

- composite-material:
 70 % hydroxyapatite & calciumphosphate
 20 % collagen & proteoglycane
 10 % water
- Young's modulus: appr. 30 GPa

fracture toughness: 2 – 12 MPa m^{1/2}

BIOLOX[®]

inside

Dr. N. Schneider slide 5 Nantes, 08.05.2014

Damascene-steel

50 % rich-C- or P steel

Young's-modulus: 210 GPa

fracture toughness: 50 MPa m^{1/2}

BIOLOX[®]

inside

Dr. N. Schneider slide 6 Nantes, 08.05.2014

BIOLOX[®] delta

- composite-material: 80 % Al₂O₃ 17 % ZrO₂ 3 % toughening platelets
- Young's modulus: 360 GPa

BIOLOX[®]delta

Dr. N. Schneider slide 7 Nantes, 08.05.2014 **Transformation toughening of ZrO₂**

BIOLOX®

inside

Dr. N. Schneider slide 8 Nantes, 08.05.2014

Toughening mechanisms in BIOLOX[®]delta

Dr. N. Schneider slide 9 Nantes, 08.05.2014

3-point-bending strength

Dr. N. Schneider slide 10 Nantes, 08.05.2014

Microstructure of BIOLOX® ceramics

BIOLOX[®]

inside

Dr. N. Schneider slide 11 Nantes, 08.05.2014

Material properties of BIOLOX®-ceramics

		BIOLOX[®] forte	BIOLOX[®]delta
Variable	Unit	Mean value	Mean value
Al ₂ O ₃	Vol.%	99,8	80
ZrO ₂	Vol.%	n.a.	17
mean grain size	μm	1,75	0,56
4-point-bending- strength	MPa	631	1384
Young's modulus	GPa	407	358
frac. toughn. K _{IC}	MPa m ^{1/2}	3,2	6,5

BIOLOX[®] inside

Dr. N. Schneider slide 12 Nantes, 08.05.2014

Aim of the project

development of a porous ceramic coating based on BIOLOX[®] delta for allceramic joint replacement

▶ reduced wall thickness (3 mm) \rightarrow lower outer diameter

▶ improved functionality \rightarrow combination of superior tribological properties of ceramics and direct osseointegration

large monolithical system \rightarrow simplified implantation, avoiding surgical errors

BIOLOX[®]

inside

Dr. N. Schneider slide 13 Nantes, 08.05.2014

Content

- Background
- Coating and sintering process
- Surface properties
- Mechanical properties
- Cellbiological / Clinical results
- Regulatory aspects
- General project risks

Dr. N. Schneider slide 14 Nantes, 08.05.2014

Coating process

spraying of ceramic slurry

BIOLOX®

inside

Dr. N. Schneider slide 15 Nantes, 08.05.2014

Coating process

spraying of pore forming agent

pore forming agent: organic material

pore forming agent is completely removed during sintering process

BIOLOX®

inside

Dr. N. Schneider slide 16 Nantes, 08.05.2014

Sintering process

sintered coating

- thermical removing of pore forming agent
- properties of coating depend on sintering temperature, pressure and sintering time

BIOLOX®

inside

Dr. N. Schneider slide 17 Nantes, 08.05.2014

Surface treatment after sintering

finished coating surface

removing mechanically instable parts of the coating

pore opening

BIOLOX[®]

inside

Dr. N. Schneider slide 18 Nantes, 08.05.2014

Coating process

Coating process is bench-scale unit

Dr. N. Schneider slide 19 Nantes, 08.05.2014

Content

BIOLOX[®]

inside

Coating and sintering process

Surface properties

- Mechanical properties
- Cellbiological / Clinical results
- Regulatory aspects
- General project risks

Dr. N. Schneider slide 20 Nantes, 08.05.2014

BIOLOX® inside

Characterization: optical microscope / SEM

Dr. N. Schneider slide 21 Nantes, 08.05.2014

BIOLOX® inside

Characterization: Laser-scanningmicroscope

slide 22 Nantes, 08.05.2014

SEM-pictures

CeramTec 10.0kV 14.0mm x4.00k SE(L) 10/29/2010

Dr. N. Schneider slide 23 Nantes, 08.05.2014

Content

BIOLOX[®]

inside

- Coating and sintering process
- Surface properties
- Mechanical properties
- Cellbiological / Clinical results
- Regulatory aspects
- General project risks

Dr. N. Schneider slide 24 Nantes, 08.05.2014

Characterization: compression strength

BIOLOX[®]

inside

Nantes, 08.05.2014

Characterization: shear strength

BIOLOX[®]

BIOLOX[®] inside

80

Characterization: adhesive strength

number of sample and mean value (MW)

Dr. N. Schneider slide 27 Nantes, 08.05.2014

Characterization: biaxial bending strength

CeramTec

BIOLOX[®]

inside

Dr. N. Schneider slide 28 Nantes, 08.05.2014

substrate

coating

Analysis of fracture origin

Fracture origin

pore

CeramTec 20.0kV 18.6mm x100 SE(L) 7/8/2008

500um

prototype design

Requirements:

BIOLOX®

inside

- \rightarrow Testing geometry hip joint cup
- \rightarrow bearing couple 40 mm diameter
- ightarrow wall thickness as small as possible

(minimized space requirement)

Cup-Design relates to:

- \rightarrow range of motion
- \rightarrow luxation stability
- \rightarrow mechanical stability
- \rightarrow production process

Prototype

Dr. N. Schneider slide 30 Nantes, 08.05.2014

Dr. N. Schneider slide 31 Nantes, 08.05.2014

Results of burst-test

Dr. N. Schneider slide 32 Nantes, 08.05.2014

Content

BIOLOX[®]

inside

- Coating and sintering process
- Surface properties
- Mechanical properties
- Cellbiological / Animal study results
- Regulatory aspects
- General project risks

Dr. N. Schneider slide 33 Nantes, 08.05.2014

Osseointegration in biological study

52 weeks after implantation

CeramTec

Schreiner, Schulze, Schwarz et al., ZOrthopUnf all 2011

Dr. N. Schneider slide 34 Nantes, 08.05.2014

Schulze,

all 2011

al.,

Osseointegration in biological study

Masson-Goldner stain

Dr. N. Schneider slide 35 Nantes, 08.05.2014

Osseointegration in biological study

BIOLOX®

Schreiner. Schulze, Schwarz et al., ZOrthopUnf all 2011

Nantes, 08.05.2014

BIOLOX[®] inside

Cell-tests (humane osteoblasts) of different pore size distributions

Proliferation after 96 h (n=14)

Proliferation after 24 h (n=14)

Test of osseointegration

BIOLOX[®] inside

- + Hydroxyapatite, Ca₅[OH(PO₄)₃]
- inorganic part of bone
 no development of connective tissue

+ RGD-F

+ RGD-Peptides

- protein of extracellular matrix
- adhesion of cells using Integrin-coupling
- mechanically stable cell network

not activated

with O₂-Plasma activated

- + Plasma-activation
- ▶ decrease of contact angel (↓) increase of surface energy (↑), leads to higher adhesion of bone cells
- reaction gas: oxygen
- durability: 4 days (reversible reaction)

Dr. N. Schneider slide 38 Nantes, 08.05.2014

Osseointegration in biological study (sheep)

Dr. N. Schneider slide 39 Nantes, 08.05.2014

BIOLOX[®] inside

Osseointegration in biological study (sheep)

Dr. N. Schneider slide 40 Nantes, 08.05.2014

Biological study – comp. to literature

[1] H. Hartwig, L. Rehak, et al., Biomed. Tech. 1995 40, S. 99-105

[2] R. Rack et al., Bioceramics in Joint Arthroplasty Stuttgart, New York: Thieme 2001, S. 103-108

[3] E. Steinhauser, R. Bader, et al., Materialprüfung 2005 47 S. 197-202

BIOLOX®

inside

Dr. N. Schneider slide 41 Nantes, 08.05.2014

Cement compatibility

fatigue-test:

6

DTB

cementing on Sawbone[®] using Palacos[®]R, **1.5 million cycles, 5 Hz** with flexion angles of 8°, 15° and 110° **highest load 2.6 kN lowest load 168 N** outer/inner rotation between -1.9° and +5.7°

Dr. N. Schneider slide 42 Nantes, 08.05.2014

Cement compatibility

Post-fatigue pull-off test:

way-controlled, 5 mm/min

BIOLOX[®]

inside

Dr. N. Schneider slide 43 Nantes, 08.05.2014

- Coating process is reproducible
- Alumina-Zirconia-ceramics are biocompatible materials
- ▶ porous coating leads to bone ingrowth ⇒ shear strength of bone and implant is comparable with Titanium implants
- Coating is fully bonded to substrate during sintering ⇒ very good mechanical testing results ⇒ acceptance criteria of FDA passed!

BIOLOX®

inside

Dr. N. Schneider slide 44 Nantes, 08.05.2014

Disclaimer

This document is intended exclusively for experts in the field and is expressly not for the information of laypersons. The information on the products and / or procedures contained in this document is of a general nature and does not represent medical advice or recommendations. Since this information does not constitute any diagnostic or therapeutic statement with regard to any individual medical case, individual examination and advising of the respective patient are absolutely necessary and are not replaced by this document in whole or in part. The information contained in this document was gathered and compiled by medical experts and qualified CeramTec employees to the best of their knowledge. The greatest care was taken to ensure the accuracy and ease of understanding of the information used and presented. CeramTec does not assume any liability, however, for the up-to-dateness, accuracy, completeness or guality of the information and excludes any liability for tangible or intangible losses that may be caused by the use of this information.

In the event that this document could be construed as an offer at any time, such offer shall not be binding in any event and shall require subsequent confirmation in writing.

Dr. N. Schneider slide 45 Nantes, 08.05.2014

