

GENERAL PRESENTATION

- Complete denomination:Centre of Polymer Systems (CPS) [http://cps.utb.cz/eng/]
- Location (city, country): Zlin, Czech Republic
- Director: Assoc. Prof. Vladimir Pavlinek
- Contact person in NEWGEN: Assoc. Prof. Nabanita Saha (nabanita@ft.utb.cz) /

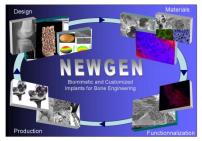
Dr. Nibedita Saha (nibedita@uni.utb.cz)

Working Group involvment: W1 and W2

WG2 : Manufacturing and characterization of 3D – porous scaffolds (e.g. Hydrogel) WG1 : Design and synthesis of raw materials (e.g. Bacterial cellulose)

Staff: Assoc. Prof. Nabanita Saha (PI), Dr. Oyunchimej Zandraa, Dr. Lenka Jelinkova, Dr. Nibedita Saha, Prof. Takeshi Kitano, Prof.Petr Saha and Ms. Rushita Shah (PhD student), Mr. Radek Vyroubal (PhD student)

Research topics:


- Hydrogel for wound dressings or transdermal drug delivery or food packaging or biomineralization
- Biogenic Gel for bone / skin / dental treatment
- Calcium rich polymeric scaffolds and Biosynthesis of bacterial cellulose

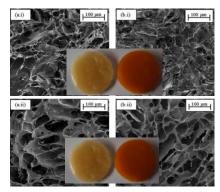
Researchers expertises: Gel & Hydrogel preparation and characterization, Cytotoxcity assay,

Microbiological assay, Polymer processing and characterization, Rheological & Mechanical property measurment, Bacterial Cellulose biosynthesis etc.

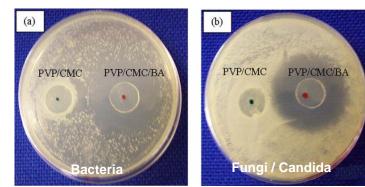
Tomas Bata University in Zlin Centre of Polymer Systems(CPS) T. G. Masarayka- 5555 76001, Zlin – Czech Republic

BIOMATERIALS/NEWGEN TOPICS

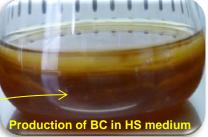
- i) Scaffolds will be designed with inter-connected porosity in which osteogenic and angiogenic agents are incorporated/added.
- ii) Bioresorable scaffolds with controlled porosity and tailored properties will be prepared using advance technologies.
- iii) Attention will be given for the preparation of slower degrading and faster degrading polymeric scaffold.
- iv) Scaffold materials, their geometry, pore size distribution, and ability to release biomolecules at desired rate will be investigated.
- v) Toughness as well as reliable and reproducible manufacturing techniques for calcium rich biomineralized polymeric scaffolds will be studied.
- vi) Hydrogel and /or Bacterial cellulose will be used as an extra-cellular matrix for biomimitic mineralization with a higher and lower concentration of calcium ion. The effect of polymer concentration, the molecular weight of the polymer and initial calcium ion concentration will also be studied.



BIOMATERIALS/NEWGEN TOPICS

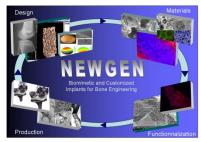

Univerzita Tomáše Bati ve Zlíně Tomas Bata Universitγ in Zlín

Biomaterial research activities at CPS, TBU in Zlin

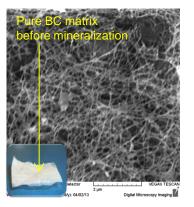


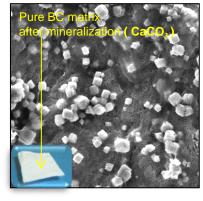
Hydrogel as wound dressing and transdermal drug delivery

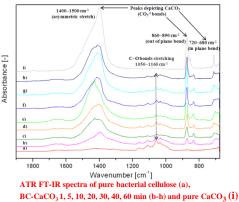
Antimicrobial assay of hydrogel



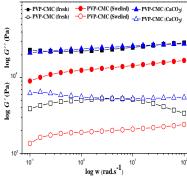
Biosynthesis of Bacterial Cellulose (BC): a renewable biopolymer for medical applications

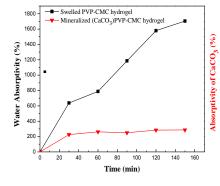


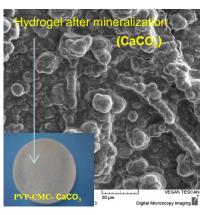


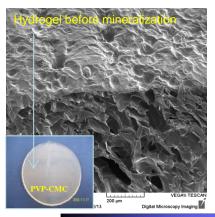

Univerzita Tomáše Bati ve Zlíně Tomas Bata Universitγ in Zlín

BIOMATERIALS/NEWGEN TOPICS






Bacterial cellulose (BC) as a matrix for biomineralization to prepare calcite filled innovative biomaterials Ref. Vyroubal, R., Saha, N.et.al. <u>Current Opinion in Biotechnology Volume 24, Supplement 1</u>, July 2013, Pages S109, European Biotechnology Congress 2013

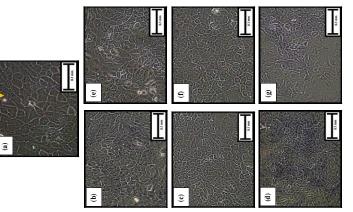


Effect of angular frequency (ω) at 1% strain on storage modulus (G', filled symbol) and loss modulus (G'', non filled symbol) for fresh, swelled and mineralized (CaCO₃) PVP-CMC hydrogel.

Absorption behavior of PVP-CMC hydrogel in presence of water and mineral solutions of calcium chloride and sodium carbonate

Univerzita Tomáše Bati ve Zlíně Tomas Bata Universitγ in Zlín

Facilities for biomaterial work and their characterization



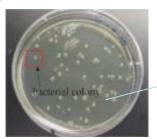
Univerzita Tomáše Bati ve Zlíně Tomas Bata Universitγ in Zlín

Facilities for cell culture and characterization

Optical micrograph of human skin (HaCaT) cell growth after 24 hour cultivation in absence and presence of hydrogels extract: (a) control (b) PVP-CMC 10% (c) PVP-CMC 50% (d) PVP-CMC 100% (e) PVP-CMC-BA 10% (f) PVP-CMC-BA 50% (g) PVP-CMC-BA 100%

Univerzita Tomáše Bati ve Zlíně Tomas Bata Universitγ in Zlín

Facilities for Microbiological work and characterization



Medium preparation and sterilization Lab

Aseptic chamber for microbiological work

Bacterial colony counting

 Univerzita Tomáše Bati ve Zlíně Tomas Bata Universitγ in Zlín

FACILITIES

Clean laboratories for medical applications

Regarding availability of equipment facilities at CPS,

http://cps.utb.cz/eng/index.php/pistrojove-vybaveni

Please visit the following link.

COST Action MP1301

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY