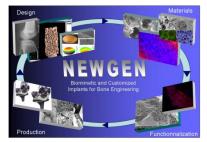
GENERAL PRESENTATION

• Complete denomination: Brno University of Technology,


Central European Institute of Technology

• Location (city, country): Brno, Czech Republic

Technicka 10, 61600 Brno, CR

- **Director**: Prof. Radimir Vrba
- Contact person in NEWGEN: Prof. Jaroslav Cihlar; cihlar@fme.vutbr.cz

COST Action MP1301

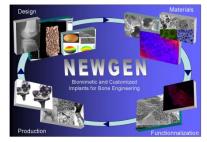
Central European Institute of Technology BRNO | CZECH REPUBLIC_____

GENERAL PRESENTATION

Central European Institute of Technology BRNO | CZECH REPUBLIC

CEITEC: was found by the European Commission in 2011. It is a consortium of 4 universities and 2 research institutes located in Brno. 7 research programmes (composed of 60 research groups) of CEITEC integrate R&D in the fields of life sciences, advanced materials and nanotechnologies .

- **Research Programm Coordinator of Advanced Materials:** Prof. Jaroslav Cihlar
- **Researchers of Advanced Ceramic Materials RG:**

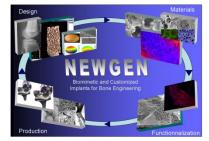

4 Profs, 2 Assoc. prof, 3 senior researchers, 5 junior researchers, 6 PhD students, 6 temporary researchers

Researchers of BioCeramics Unit (involved in NEWGEN):

1 Prof, 1 Assoc. prof, 1 senior researcher,

3 junior researchers, 3 PhD students

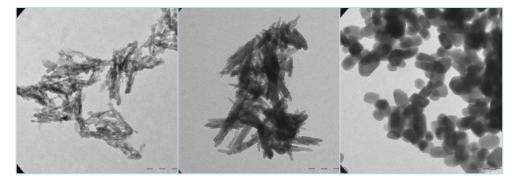
COST Action MP1301

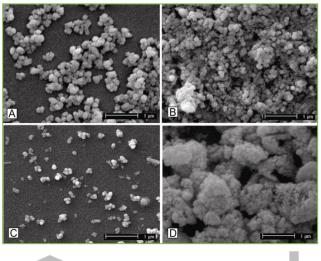


RESEARCHERS EXPERTISES

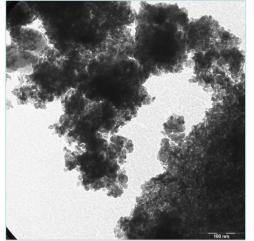
Central European Institute of Technology BRNO | CZECH REPUBLIC

- non-classical and colloidal synthesis of bioceramic nanoparticles;
- morphology and structure of bioceramic nanoparticles and composites;
- technology of advanced (bio)ceramic materials (electrophoretic deposition, powder injection moulding, pressing, CIP, HIP, dip-coating, spraying, sol-gel methods);
- physical and chemical processes in bioceramic materials;
- physical, mechanical and biological properties of advanced bioceramics and composites

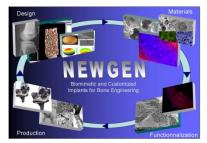



Central European Institute of Technology BRNO | CZECH REPUBLIC

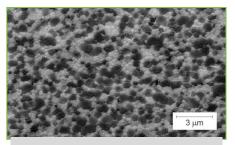
Synthesis of nanoparticles and precursors

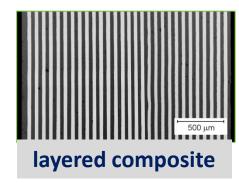

Morphology of hydroxyapatite nanoparticles prepared by hydrothermal synthesis

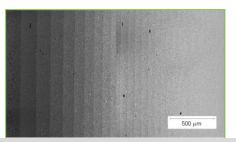
Hydroxyapatite nanoparticles prepared by solvothermal sol-gel synthesis from alkylphosphoric acids



Calcium stabilised zirconia nanoparticles prepared by sol-gel synthesis

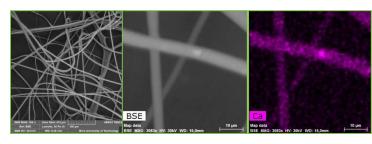


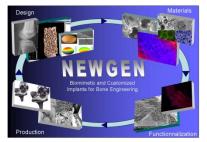

Central European Institute of Technology BRNO | CZECH REPUBLIC


Bioceramic composites and scafolds

Zirconia/alumina and zirconia/hydroxyapatite composites prepared by electrophoretic deposition

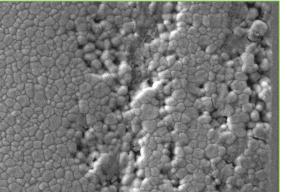
particle composite




concentration graded composite

Hydroxyapatite scaffold preparedChitosan/hydroxyapatiteby template methodnanofibres prepared

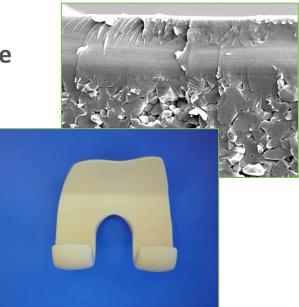
Chitosan/hydroxyapatite composite nanofibres prepared by force-spinning

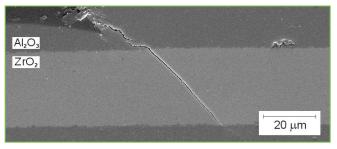


COST Action MP1301

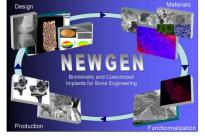
EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Bioinert bioceramic composites


Hydroxyapatite coating on the surface of zirconia knee implant component

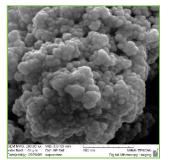


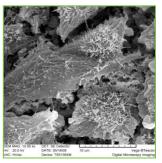
Corrosion of zirconia knee implant surface by water steam

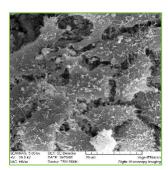


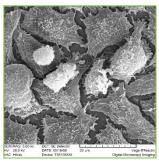
Central European Institute of Technology BRNO | CZECH REPUBLIC

High fracture toughness layered zirconia-alumina composites

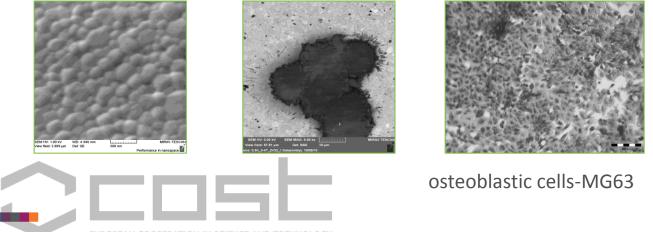

COST Action MP1301

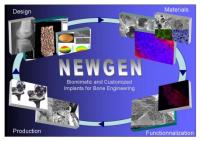

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY




Cytocompatibility of bioceramic composites

Spreading of cells on the surface of zirconia nanostructured coating (72 hours of cultivation)





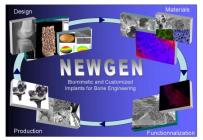
epithelic cells-HeLa fibroblastic cells-L929 osteoblastic cells-MG63

Spreading of cells on the surface of polished zirconia nanograined surface (0.5 and 2 hours of cultivation)

FACILITIES

Synthesis of nanoparticles and precursors

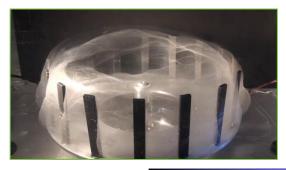
- solvothermal reactor (250°C, 20 MPa, 5 l)
- microwave solvothermal reactors (200°C, 10 MPa, 1 l)
- ultrasonic sonochemical reactors
- spray dryers
- high temperature solid state reactors


Characterisation of nanoparticles and precursors

- **physical**: gran size distribution, surface area, zeta potential, morphology (TA, DSC,.)
- **chemical and structural**: IR, UV, Raman, MNR, XRD, SEM, TEM, HRTEM, AFM, XPS, EDS,.....
- **biological**: cell culture, cytocompatibility, biochemistry, microbiology

FACILITIES

Central European Institute of Technology BRNO | CZECH REPUBLIC

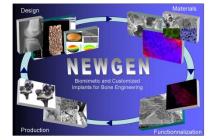

Consolidation and Shaping

- uniaxial pressing, CIP, HIP,
- slip casting, tape casting, machining, atritors
- dip-coating, spray coating, jet-printing
- 3D ceramic lithography
- force-nanospinning

Binder extraction and Densification

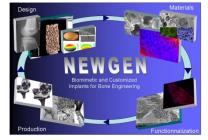
- temporary binders extractors
- pressureless sintering at various atmosheres
- HIP

FACILITIES


Central European Institute of Technology BRNO | CZECH REPUBLIC

Characterisation of bioceramics, coatings and fibres

- **physical**: density, pore distribution, porosity,
- **microstructure**: complete ceramography, XRD, IP, Raman, SEM, TEM, HRTEM, AFM, XPS, EDS,.
- **mechanical properties**: flectural and compresive strength, fracture toughness, hardness, surface roughness
- electrical properties: impedance spectroscopy, piezoelectricity,
- **biological**: cytocompatibility, biochemistry, microbiology



THE GOALS IN NEWGEN

Central European Institute of Technology BRNO | CZECH REPUBLIC

- The research of CEITEC-BUT group could be primarily focused on structurally and functionally graded composites and multiphase scaffolds based on hydroxyapatite, non-stoichiometric Ca-phosphates, Ca-phosphate substituted by biogenic elements, and bioactive polymer carriers of Ca-phosphate nanoparticles stimulating an osteoinduction of bone cells.
- Biomaterial research will include a study of the synthesis of multiphase Ca-phosphate nanoparticles and bioactive polymers and the study of the manufacture, structure and properties of new (nano)bioceramic composites and scaffolds.
- 3D printing of bioceramic and composite scaffolds , force-spinning of biopolymer/Ca-phosphate nanofibres (scaffolds) and EPD/template methods will be namely investigated.

